Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 200

1.

C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.

Dafinca R, Scaber J, Ababneh N, Lalic T, Weir G, Christian H, Vowles J, Douglas AG, Fletcher-Jones A, Browne C, Nakanishi M, Turner MR, Wade-Martins R, Cowley SA, Talbot K.

Stem Cells. 2016 Aug;34(8):2063-78. doi: 10.1002/stem.2388. Epub 2016 May 4.

2.

Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion.

Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH.

Sci Transl Med. 2013 Oct 23;5(208):208ra149. doi: 10.1126/scitranslmed.3007529.

3.

Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons.

Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S, Tapper AR, Sellier C, Charlet-Berguerand N, Karydas A, Seeley WW, Boxer AL, Petrucelli L, Miller BL, Gao FB.

Acta Neuropathol. 2013 Sep;126(3):385-99. doi: 10.1007/s00401-013-1149-y. Epub 2013 Jul 9. Erratum in: Acta Neuropathol. 2014 Jun;127(6):941.

4.

The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions.

Simón-Sánchez J, Dopper EG, Cohn-Hokke PE, Hukema RK, Nicolaou N, Seelaar H, de Graaf JR, de Koning I, van Schoor NM, Deeg DJ, Smits M, Raaphorst J, van den Berg LH, Schelhaas HJ, De Die-Smulders CE, Majoor-Krakauer D, Rozemuller AJ, Willemsen R, Pijnenburg YA, Heutink P, van Swieten JC.

Brain. 2012 Mar;135(Pt 3):723-35. doi: 10.1093/brain/awr353. Epub 2012 Feb 1.

PMID:
22300876
5.

A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD.

Esanov R, Cabrera GT, Andrade NS, Gendron TF, Brown RH Jr, Benatar M, Wahlestedt C, Mueller C, Zeier Z.

Mol Neurodegener. 2017 Jun 12;12(1):46. doi: 10.1186/s13024-017-0185-9.

6.

The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis.

Farg MA, Konopka A, Soo KY, Ito D, Atkin JD.

Hum Mol Genet. 2017 Aug 1;26(15):2882-2896. doi: 10.1093/hmg/ddx170.

PMID:
28481984
7.

Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia.

Stepto A, Gallo JM, Shaw CE, Hirth F.

Acta Neuropathol. 2014 Mar;127(3):377-89. doi: 10.1007/s00401-013-1235-1. Epub 2013 Dec 24. Review.

PMID:
24366528
8.

C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia.

Aoki Y, Manzano R, Lee Y, Dafinca R, Aoki M, Douglas AGL, Varela MA, Sathyaprakash C, Scaber J, Barbagallo P, Vader P, Mäger I, Ezzat K, Turner MR, Ito N, Gasco S, Ohbayashi N, El Andaloussi S, Takeda S, Fukuda M, Talbot K, Wood MJA.

Brain. 2017 Apr 1;140(4):887-897. doi: 10.1093/brain/awx024.

PMID:
28334866
9.

Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons.

Lopez-Gonzalez R, Lu Y, Gendron TF, Karydas A, Tran H, Yang D, Petrucelli L, Miller BL, Almeida S, Gao FB.

Neuron. 2016 Oct 19;92(2):383-391. doi: 10.1016/j.neuron.2016.09.015. Epub 2016 Oct 6.

10.

Modeling the C9ORF72 repeat expansion mutation using human induced pluripotent stem cells.

Selvaraj BT, Livesey MR, Chandran S.

Brain Pathol. 2017 Jul;27(4):518-524. doi: 10.1111/bpa.12520. Review.

PMID:
28585384
11.

C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons.

Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A, Lojewski X, Sterneckert J, Hermann A, Shaw PJ, Ince PG, Mann M, Meissner F, Sendtner M.

Nat Neurosci. 2016 Dec;19(12):1610-1618. doi: 10.1038/nn.4407. Epub 2016 Oct 10.

12.

The frequency of the C9orf72 expansion in a Brazilian population.

Cintra VP, Bonadia LC, Andrade HMT, de Albuquerque M, Eusébio MF, de Oliveira DS, Claudino R, Gonçalves MVM, Teixeira AL Jr, de Godoy Rousseff Prado L, de Souza LC, Dourado MET Jr, Oliveira ASB, Tumas V, França MC Jr, Marques W Jr.

Neurobiol Aging. 2018 Jun;66:179.e1-179.e4. doi: 10.1016/j.neurobiolaging.2018.01.007. Epub 2018 Jan 31.

PMID:
29449030
13.

Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons.

Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST, Hendricks E, Linares GR, Wang Y, Son EY, Wen X, Kisler K, Wilkinson B, Menendez L, Sugawara T, Woolwine P, Huang M, Cowan MJ, Ge B, Koutsodendris N, Sandor KP, Komberg J, Vangoor VR, Senthilkumar K, Hennes V, Seah C, Nelson AR, Cheng TY, Lee SJ, August PR, Chen JA, Wisniewski N, Hanson-Smith V, Belgard TG, Zhang A, Coba M, Grunseich C, Ward ME, van den Berg LH, Pasterkamp RJ, Trotti D, Zlokovic BV, Ichida JK.

Nat Med. 2018 Mar;24(3):313-325. doi: 10.1038/nm.4490. Epub 2018 Feb 5.

14.

The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway.

Ciura S, Sellier C, Campanari ML, Charlet-Berguerand N, Kabashi E.

Autophagy. 2016 Aug 2;12(8):1406-8. doi: 10.1080/15548627.2016.1189070. Epub 2016 May 31.

15.

C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten.

Stopford MJ, Higginbottom A, Hautbergue GM, Cooper-Knock J, Mulcahy PJ, De Vos KJ, Renton AE, Pliner H, Calvo A, Chio A, Traynor BJ, Azzouz M, Heath PR; ITALSGEN Consortium, NeuroX Consortium, Kirby J, Shaw PJ.

Hum Mol Genet. 2017 Mar 15;26(6):1133-1145. doi: 10.1093/hmg/ddx022.

16.

The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.

Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S, Gupta S, Thomas MA, Hong I, Chiu SL, Huganir RL, Ostrow LW, Matunis MJ, Wang J, Sattler R, Lloyd TE, Rothstein JD.

Nature. 2015 Sep 3;525(7567):56-61. doi: 10.1038/nature14973. Epub 2015 Aug 26.

17.

Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72.

Chiò A, Borghero G, Restagno G, Mora G, Drepper C, Traynor BJ, Sendtner M, Brunetti M, Ossola I, Calvo A, Pugliatti M, Sotgiu MA, Murru MR, Marrosu MG, Marrosu F, Marinou K, Mandrioli J, Sola P, Caponnetto C, Mancardi G, Mandich P, La Bella V, Spataro R, Conte A, Monsurrò MR, Tedeschi G, Pisano F, Bartolomei I, Salvi F, Lauria Pinter G, Simone I, Logroscino G, Gambardella A, Quattrone A, Lunetta C, Volanti P, Zollino M, Penco S, Battistini S; ITALSGEN consortium, Renton AE, Majounie E, Abramzon Y, Conforti FL, Giannini F, Corbo M, Sabatelli M.

Brain. 2012 Mar;135(Pt 3):784-93. doi: 10.1093/brain/awr366.

18.

Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice.

Peters OM, Cabrera GT, Tran H, Gendron TF, McKeon JE, Metterville J, Weiss A, Wightman N, Salameh J, Kim J, Sun H, Boylan KB, Dickson D, Kennedy Z, Lin Z, Zhang YJ, Daughrity L, Jung C, Gao FB, Sapp PC, Horvitz HR, Bosco DA, Brown SP, de Jong P, Petrucelli L, Mueller C, Brown RH Jr.

Neuron. 2015 Dec 2;88(5):902-909. doi: 10.1016/j.neuron.2015.11.018.

19.

Longitudinal imaging in C9orf72 mutation carriers: Relationship to phenotype.

Floeter MK, Bageac D, Danielian LE, Braun LE, Traynor BJ, Kwan JY.

Neuroimage Clin. 2016 Oct 22;12:1035-1043. eCollection 2016.

20.

Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72.

Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR, Wszolek ZK, Ferman TJ, Josephs KA, Boylan KB, Rademakers R, Dickson DW.

Acta Neuropathol. 2011 Dec;122(6):673-90. doi: 10.1007/s00401-011-0907-y. Epub 2011 Nov 15.

Supplemental Content

Support Center