Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Epilepsy with auditory features: A heterogeneous clinico-molecular disease.

Pippucci T, Licchetta L, Baldassari S, Palombo F, Menghi V, D'Aurizio R, Leta C, Stipa C, Boero G, d'Orsi G, Magi A, Scheffer I, Seri M, Tinuper P, Bisulli F.

Neurol Genet. 2015 May 14;1(1):e5. doi: 10.1212/NXG.0000000000000005. eCollection 2015 Jun.

2.

SCN1A mutations in focal epilepsy with auditory features: widening the spectrum of GEFS plus.

Bisulli F, Licchetta L, Baldassari S, Muccioli L, Marconi C, Cantalupo G, Myers C, Menghi V, Minardi R, Caporali L, Marini C, Guerrini R, Mefford HC, Tinuper P, Pippucci T.

Epileptic Disord. 2019 Apr 1;21(2):185-191. doi: 10.1684/epd.2019.1046.

PMID:
30977726
3.

CNTNAP2 mutations and autosomal dominant epilepsy with auditory features.

Leonardi E, Dazzo E, Aspromonte MC, Tabaro F, Pascarelli S, Tosatto SCE, Michelucci R, Murgia A, Nobile C.

Epilepsy Res. 2018 Jan;139:51-53. doi: 10.1016/j.eplepsyres.2017.11.006. Epub 2017 Nov 21.

PMID:
29179159
4.

Exome sequencing reveals new causal mutations in children with epileptic encephalopathies.

Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron A, Greenberg ME, Stuhlmann T, Weinert S, Jentsch TJ, Pazzi M, Restifo LL, Talwar D, Erickson RP, Hammer MF.

Epilepsia. 2013 Jul;54(7):1270-81. doi: 10.1111/epi.12201. Epub 2013 May 3.

5.

Low penetrance of autosomal dominant lateral temporal epilepsy in Italian families without LGI1 mutations.

Michelucci R, Pasini E, Malacrida S, Striano P, Bonaventura CD, Pulitano P, Bisulli F, Egeo G, Santulli L, Sofia V, Gambardella A, Elia M, de Falco A, Neve Al, Banfi P, Coppola G, Avoni P, Binelli S, Boniver C, Pisano T, Marchini M, Dazzo E, Fanciulli M, Bartolini Y, Riguzzi P, Volpi L, de Falco FA, Giallonardo AT, Mecarelli O, Striano S, Tinuper P, Nobile C.

Epilepsia. 2013 Jul;54(7):1288-97. doi: 10.1111/epi.12194. Epub 2013 Apr 26.

6.

Autosomal dominant lateral temporal epilepsy (ADLTE): novel structural and single-nucleotide LGI1 mutations in families with predominant visual auras.

Dazzo E, Santulli L, Posar A, Fattouch J, Conti S, Lodén-van Straaten M, Mijalkovic J, De Bortoli M, Rosa M, Millino C, Pacchioni B, Di Bonaventura C, Giallonardo AT, Striano S, Striano P, Parmeggiani A, Nobile C.

Epilepsy Res. 2015 Feb;110:132-8. doi: 10.1016/j.eplepsyres.2014.12.004. Epub 2014 Dec 16.

PMID:
25616465
7.

Concurrent exome-targeted next-generation sequencing and single nucleotide polymorphism array to identify the causative genetic aberrations of isolated Mayer-Rokitansky-Küster-Hauser syndrome.

Chen MJ, Wei SY, Yang WS, Wu TT, Li HY, Ho HN, Yang YS, Chen PL.

Hum Reprod. 2015 Jul;30(7):1732-42. doi: 10.1093/humrep/dev095. Epub 2015 Apr 29.

PMID:
25924657
8.

Genetic and epigenetic mechanisms of epilepsy: a review.

Chen T, Giri M, Xia Z, Subedi YN, Li Y.

Neuropsychiatr Dis Treat. 2017 Jul 13;13:1841-1859. doi: 10.2147/NDT.S142032. eCollection 2017. Review.

9.

Co-occurring malformations of cortical development and SCN1A gene mutations.

Barba C, Parrini E, Coras R, Galuppi A, Craiu D, Kluger G, Parmeggiani A, Pieper T, Schmitt-Mechelke T, Striano P, Giordano F, Blumcke I, Guerrini R.

Epilepsia. 2014 Jul;55(7):1009-19. doi: 10.1111/epi.12658. Epub 2014 Jun 5.

10.

From focal epilepsy to Dravet syndrome--Heterogeneity of the phenotype due to SCN1A mutations of the p.Arg1596 amino acid residue in the Nav1.1 subunit.

Hoffman-Zacharska D, Szczepanik E, Terczynska I, Goszczanska-Ciuchta A, Zalewska-Miszkurka Z, Tataj R, Bal J.

Neurol Neurochir Pol. 2015;49(4):258-66. doi: 10.1016/j.pjnns.2015.06.006. Epub 2015 Jun 20.

PMID:
26188943
11.

Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy: Outcomes and Lessons Learned.

Ghaoui R, Cooper ST, Lek M, Jones K, Corbett A, Reddel SW, Needham M, Liang C, Waddell LB, Nicholson G, O'Grady G, Kaur S, Ong R, Davis M, Sue CM, Laing NG, North KN, MacArthur DG, Clarke NF.

JAMA Neurol. 2015 Dec;72(12):1424-32. doi: 10.1001/jamaneurol.2015.2274.

PMID:
26436962
12.

Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders.

Poot M.

Mol Syndromol. 2015 Feb;6(1):7-22. doi: 10.1159/000371594. Epub 2015 Feb 3. Review.

13.

Exome sequencing identifies molecular diagnosis in children with drug-resistant epilepsy.

Tsang MH, Leung GK, Ho AC, Yeung KS, Mak CC, Pei SL, Yu MH, Kan AS, Chan KY, Kwong KL, Lee SL, Yung AW, Fung CW, Chung BH.

Epilepsia Open. 2018 Dec 6;4(1):63-72. doi: 10.1002/epi4.12282. eCollection 2019 Mar.

14.

Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1.

Gregor A, Albrecht B, Bader I, Bijlsma EK, Ekici AB, Engels H, Hackmann K, Horn D, Hoyer J, Klapecki J, Kohlhase J, Maystadt I, Nagl S, Prott E, Tinschert S, Ullmann R, Wohlleber E, Woods G, Reis A, Rauch A, Zweier C.

BMC Med Genet. 2011 Aug 9;12:106. doi: 10.1186/1471-2350-12-106.

15.

Identification of SCN1A and PCDH19 mutations in Chinese children with Dravet syndrome.

Kwong AK, Fung CW, Chan SY, Wong VC.

PLoS One. 2012;7(7):e41802. doi: 10.1371/journal.pone.0041802. Epub 2012 Jul 25.

16.

Molecular diagnosis of putative Stargardt Disease probands by exome sequencing.

Strom SP, Gao YQ, Martinez A, Ortube C, Chen Z, Nelson SF, Nusinowitz S, Farber DB, Gorin MB.

BMC Med Genet. 2012 Aug 3;13:67.

17.

Intragenic CNTNAP2 Deletions: A Bridge Too Far?

Poot M.

Mol Syndromol. 2017 May;8(3):118-130. doi: 10.1159/000456021. Epub 2017 Feb 10. Review.

18.

Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures.

Rhodes TH, Vanoye CG, Ohmori I, Ogiwara I, Yamakawa K, George AL Jr.

J Physiol. 2005 Dec 1;569(Pt 2):433-45. Epub 2005 Oct 6.

19.

Exome sequencing study of partial agenesis of the corpus callosum in men with developmental delay, epilepsy, and microcephaly.

Meloche J, Brunet V, Gagnon PA, Lavoie MÈ, Bouchard JB, Nadaf J, Majewski J, Morin C, Laprise C.

Mol Genet Genomic Med. 2019 Oct 2:e992. doi: 10.1002/mgg3.992. [Epub ahead of print]

20.

Whole exome sequencing of distant relatives in multiplex families implicates rare variants in candidate genes for oral clefts.

Bureau A, Parker MM, Ruczinski I, Taub MA, Marazita ML, Murray JC, Mangold E, Noethen MM, Ludwig KU, Hetmanski JB, Bailey-Wilson JE, Cropp CD, Li Q, Szymczak S, Albacha-Hejazi H, Alqosayer K, Field LL, Wu-Chou YH, Doheny KF, Ling H, Scott AF, Beaty TH.

Genetics. 2014 Jul;197(3):1039-44. doi: 10.1534/genetics.114.165225. Epub 2014 May 2.

Supplemental Content

Support Center