Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.

Foy JP, Tortereau A, Caulin C, Le Texier V, Lavergne E, Thomas E, Chabaud S, Perol D, Lachuer J, Lang W, Hong WK, Goudot P, Lippman SM, Bertolus C, Saintigny P.

Oncotarget. 2016 Jun 14;7(24):35932-35945. doi: 10.18632/oncotarget.8321.

2.

Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice.

Tang XH, Knudsen B, Bemis D, Tickoo S, Gudas LJ.

Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):301-13.

3.

No difference in 4-nitroquinoline induced tumorigenesis between germ-free and colonized mice.

Zhou YX, Fuentes-Creollo G, Ponce F, Langley SA, Jen KY, Celniker SE, Mao JH, Snijders AM.

Mol Carcinog. 2019 May;58(5):627-632. doi: 10.1002/mc.22972. Epub 2019 Jan 22.

PMID:
30632250
4.

Met Receptor Tyrosine Kinase and Chemoprevention of Oral Cancer.

Saintigny P, William WN Jr, Foy JP, Papadimitrakopoulou V, Lang W, Zhang L, Fan YH, Feng L, Kim ES, El-Naggar AK, Lee JJ, Mao L, Hong WK, Lingen MW, Lippman SM.

J Natl Cancer Inst. 2018 Mar 1;110(3). doi: 10.1093/jnci/djx186.

6.

Dual inhibition of vascular endothelial growth factor receptor and epidermal growth factor receptor is an effective chemopreventive strategy in the mouse 4-NQO model of oral carcinogenesis.

Zhou G, Hasina R, Wroblewski K, Mankame TP, Do├ži CL, Lingen MW.

Cancer Prev Res (Phila). 2010 Nov;3(11):1493-502. doi: 10.1158/1940-6207.CAPR-10-0135. Epub 2010 Oct 26.

7.

Overexpression of lipocalins and pro-inflammatory chemokines and altered methylation of PTGS2 and APC2 in oral squamous cell carcinomas induced in rats by 4-nitroquinoline-1-oxide.

Peng X, Li W, Johnson WD, Torres KE, McCormick DL.

PLoS One. 2015 Jan 30;10(1):e0116285. doi: 10.1371/journal.pone.0116285. eCollection 2015.

8.

Bitter Melon Prevents the Development of 4-NQO-Induced Oral Squamous Cell Carcinoma in an Immunocompetent Mouse Model by Modulating Immune Signaling.

Sur S, Steele R, Aurora R, Varvares M, Schwetye KE, Ray RB.

Cancer Prev Res (Phila). 2018 Apr;11(4):191-202. doi: 10.1158/1940-6207.CAPR-17-0237. Epub 2017 Oct 23.

9.

Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies.

Fadlullah MZ, Chiang IK, Dionne KR, Yee PS, Gan CP, Sam KK, Tiong KH, Ng AK, Martin D, Lim KP, Kallarakkal TG, Mustafa WM, Lau SH, Abraham MT, Zain RB, Rahman ZA, Molinolo A, Patel V, Gutkind JS, Tan AC, Cheong SC.

Oncotarget. 2016 May 10;7(19):27802-18. doi: 10.18632/oncotarget.8533.

10.

Proteomics-based investigation of multiple stages of OSCC development indicates that the inhibition of Trx-1 delays oral malignant transformation.

Chen X, Hu Q, Wu T, Wang C, Xia J, Yang L, Cheng B, Chen X.

Int J Oncol. 2018 Mar;52(3):733-742. doi: 10.3892/ijo.2018.4235. Epub 2018 Jan 3.

11.
12.

Loss of NDRG2 Expression Confers Oral Squamous Cell Carcinoma with Enhanced Metastatic Potential.

Tamura T, Ichikawa T, Nakahata S, Kondo Y, Tagawa Y, Yamamoto K, Nagai K, Baba T, Yamaguchi R, Futakuchi M, Yamashita Y, Morishita K.

Cancer Res. 2017 May 1;77(9):2363-2374. doi: 10.1158/0008-5472.CAN-16-2114. Epub 2017 Feb 16.

13.

A DNA methyltransferase inhibitor and all-trans retinoic acid reduce oral cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide.

Tang XH, Albert M, Scognamiglio T, Gudas LJ.

Cancer Prev Res (Phila). 2009 Dec;2(12):1100-10. doi: 10.1158/1940-6207.CAPR-09-0136. Epub 2009 Dec 1.

14.

Methylation-associated gene silencing of RARB in areca carcinogens induced mouse oral squamous cell carcinoma.

Lai ZL, Tsou YA, Fan SR, Tsai MH, Chen HL, Chang NW, Cheng JC, Chen CM.

Biomed Res Int. 2014;2014:378358. doi: 10.1155/2014/378358. Epub 2014 Aug 17.

15.

Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression.

Vigneswaran N, Baucum DC, Wu J, Lou Y, Bouquot J, Muller S, Zacharias W.

BMC Cancer. 2007 Jun 25;7:108.

16.

Cyclin D1 expression and its possible regulation in chewing tobacco mediated oral squamous cell carcinoma progression.

Mishra R, Das BR.

Arch Oral Biol. 2009 Oct;54(10):917-23. doi: 10.1016/j.archoralbio.2009.07.003. Epub 2009 Aug 12.

PMID:
19679297
17.

Association of expression aberrances and genetic polymorphisms of lysyl oxidase with areca-associated oral tumorigenesis.

Shieh TM, Lin SC, Liu CJ, Chang SS, Ku TH, Chang KW.

Clin Cancer Res. 2007 Aug 1;13(15 Pt 1):4378-85.

18.

Overexpression of p53 is an early event in the tumorigenesis of oral squamous cell carcinomas.

Shintani S, Yoshihama Y, Emilio AR, Matsumura T.

Anticancer Res. 1995 Mar-Apr;15(2):305-8.

PMID:
7762998
20.

Cyclin D1 overexpression increases susceptibility to 4-nitroquinoline-1-oxide-induced dysplasia and neoplasia in murine squamous oral epithelium.

Wilkey JF, Buchberger G, Saucier K, Patel SM, Eisenberg E, Nakagawa H, Michaylira CZ, Rustgi AK, Mallya SM.

Mol Carcinog. 2009 Sep;48(9):853-61. doi: 10.1002/mc.20531.

Supplemental Content

Support Center