Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 62

1.

H19 controls reactivation of the imprinted gene network during muscle regeneration.

Martinet C, Monnier P, Louault Y, Benard M, Gabory A, Dandolo L.

Development. 2016 Mar 15;143(6):962-71. doi: 10.1242/dev.131771.

2.

The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration.

Dey BK, Pfeifer K, Dutta A.

Genes Dev. 2014 Mar 1;28(5):491-501. doi: 10.1101/gad.234419.113. Epub 2014 Feb 14.

3.

Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration.

Hiramuki Y, Sato T, Furuta Y, Surani MA, Sehara-Fujisawa A.

PLoS One. 2015 Jun 22;10(6):e0130436. doi: 10.1371/journal.pone.0130436. eCollection 2015.

4.

H19 acts as a trans regulator of the imprinted gene network controlling growth in mice.

Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forné T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L.

Development. 2009 Oct;136(20):3413-21. doi: 10.1242/dev.036061. Epub 2009 Sep 17.

5.

Analysis of imprinted IGF2/H19 gene methylation and expression in normal fertilized and parthenogenetic embryonic stem cells of pigs.

Uh KJ, Park CH, Choi KH, Park JK, Jeong YW, Roh S, Hyun SH, Shin T, Lee CK, Hwang WS.

Anim Reprod Sci. 2014 Jun 10;147(1-2):47-55. doi: 10.1016/j.anireprosci.2014.03.020. Epub 2014 Apr 12.

PMID:
24794444
6.

Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice.

McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L, Sharma M, Kambadur R.

J Cell Sci. 2005 Aug 1;118(Pt 15):3531-41.

7.

Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse.

Borensztein M, Monnier P, Court F, Louault Y, Ripoche MA, Tiret L, Yao Z, Tapscott SJ, Forné T, Montarras D, Dandolo L.

Development. 2013 Mar;140(6):1231-9. doi: 10.1242/dev.084665. Epub 2013 Feb 13.

8.

Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity.

Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L, Mouisel E, Hourdé C, Macharia R, Friedrichs M, Relaix F, Zammit PS, Matsakas A, Patel K, Partridge T.

Proc Natl Acad Sci U S A. 2009 May 5;106(18):7479-84. doi: 10.1073/pnas.0811129106. Epub 2009 Apr 21.

9.

The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite cell metabolic state, and self-renewal.

Correra RM, Ollitrault D, Valente M, Mazzola A, Adalsteinsson BT, Ferguson-Smith AC, Marazzi G, Sassoon DA.

Sci Rep. 2018 Oct 2;8(1):14649. doi: 10.1038/s41598-018-32941-x.

10.

Prolonged absence of myostatin reduces sarcopenia.

Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M.

J Cell Physiol. 2006 Dec;209(3):866-73.

PMID:
16972257
11.

Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients.

Pomiès P, Rodriguez J, Blaquière M, Sedraoui S, Gouzi F, Carnac G, Laoudj-Chenivesse D, Mercier J, Préfaut C, Hayot M.

J Cell Mol Med. 2015 Jan;19(1):175-86. doi: 10.1111/jcmm.12390. Epub 2014 Oct 22.

12.

Hypoglycemia from IGF2 overexpression associated with activation of fetal promoters and loss of imprinting in a metastatic hemangiopericytoma.

Lawson EA, Zhang X, Crocker JT, Wang WL, Klibanski A.

J Clin Endocrinol Metab. 2009 Jul;94(7):2226-31. doi: 10.1210/jc.2009-0153. Epub 2009 Apr 21.

PMID:
19383775
13.

Myostatin negatively regulates satellite cell activation and self-renewal.

McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R.

J Cell Biol. 2003 Sep 15;162(6):1135-47. Epub 2003 Sep 8.

14.

Modulation of Igf2 genomic imprinting in mice induced by 5-azacytidine, an inhibitor of DNA methylation.

Hu JF, Nguyen PH, Pham NV, Vu TH, Hoffman AR.

Mol Endocrinol. 1997 Dec;11(13):1891-8.

PMID:
9415394
15.

Relationship of porcine IGF2 imprinting status to DNA methylation at the H19 DMD and the IGF2 DMRs 1 and 2.

Braunschweig MH, Owczarek-Lipska M, Stahlberger-Saitbekova N.

BMC Genet. 2011 May 17;12:47. doi: 10.1186/1471-2156-12-47.

16.

Regulatory mechanisms at the mouse Igf2/H19 locus.

Kaffer CR, Grinberg A, Pfeifer K.

Mol Cell Biol. 2001 Dec;21(23):8189-96.

17.

Imprinting and expression of insulin-like growth factor-II and H19 in normal breast tissue and breast tumor.

Yballe CM, Vu TH, Hoffman AR.

J Clin Endocrinol Metab. 1996 Apr;81(4):1607-12.

PMID:
8636375
18.

Epigenetic analysis and suitability of amniotic fluid stem cells for research and therapeutic purposes.

Phermthai T, Suksompong S, Tirawanchai N, Issaragrisil S, Julavijitphong S, Wichitwiengrat S, Silpsorn D, Pokathikorn P.

Stem Cells Dev. 2013 May 1;22(9):1319-28. doi: 10.1089/scd.2012.0371. Epub 2013 Feb 12.

PMID:
23249260
19.

Inactivation of PPARβ/δ adversely affects satellite cells and reduces postnatal myogenesis.

Chandrashekar P, Manickam R, Ge X, Bonala S, McFarlane C, Sharma M, Wahli W, Kambadur R.

Am J Physiol Endocrinol Metab. 2015 Jul 15;309(2):E122-31. doi: 10.1152/ajpendo.00586.2014. Epub 2015 Apr 28.

20.

Vigilin interacts with CCCTC-binding factor (CTCF) and is involved in CTCF-dependent regulation of the imprinted genes Igf2 and H19.

Liu Q, Yang B, Xie X, Wei L, Liu W, Yang W, Ge Y, Zhu Q, Zhang J, Jiang L, Yu X, Shen W, Li R, Shi X, Li B, Qin Y.

FEBS J. 2014 Jun;281(12):2713-25. doi: 10.1111/febs.12816. Epub 2014 May 12.

Supplemental Content

Support Center