Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.
2.

[A broad-range 16S rRNA gene real-time PCR assay for the diagnosis of neonatal septicemia].

Wu YD, Shang SQ, Li JP, Yang ZQ, Zheng ZB, Du LZ, Zhao ZY.

Zhonghua Er Ke Za Zhi. 2007 Jun;45(6):446-9. Chinese.

PMID:
17880793
3.

Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections.

Rampini SK, Bloemberg GV, Keller PM, Büchler AC, Dollenmaier G, Speck RF, Böttger EC.

Clin Infect Dis. 2011 Dec;53(12):1245-51. doi: 10.1093/cid/cir692. Epub 2011 Oct 5.

4.

Diagnosis of prosthetic joint infections using UMD-Universal Kit and the automated multiplex-PCR Unyvero i60 ITI(®) cartridge system: a pilot study.

Borde JP, Häcker GA, Guschl S, Serr A, Danner T, Hübner J, Burrack-Lange S, Lüdke G, Helwig P, Hauschild O, Kern WV.

Infection. 2015 Oct;43(5):551-60. doi: 10.1007/s15010-015-0796-4. Epub 2015 May 29.

PMID:
26021312
5.

Diagnosis of neonatal sepsis by broad-range 16S real-time polymerase chain reaction.

Ohlin A, Bäckman A, Ewald U, Schollin J, Björkqvist M.

Neonatology. 2012;101(4):241-6. doi: 10.1159/000334655. Epub 2011 Dec 28.

PMID:
22205207
6.

Utility of real-time amplification of selected 16S rRNA gene sequences as a tool for detection and identification of microbial signatures directly from clinical samples.

Edwards KJ, Logan JM, Langham S, Swift C, Gharbia SE.

J Med Microbiol. 2012 May;61(Pt 5):645-52. doi: 10.1099/jmm.0.041764-0. Epub 2012 Feb 9.

PMID:
22322340
7.

Conventional and real-time PCR targeting 16S ribosomal RNA for the detection of Mycobacterium tuberculosis complex.

Choi Y, Hong SR, Jeon BY, Wang HY, Lee GS, Cho SN, Shim TS, Lee H.

Int J Tuberc Lung Dis. 2015 Sep;19(9):1102-8, i-ii. doi: 10.5588/ijtld.14.0472.

PMID:
26260833
8.

The potential role of incorporating real-time PCR and DNA sequencing for amplification and detection of 16S rRNA gene signatures in neonatal sepsis.

Midan DA, Abo El Fotoh WMM, El Shalakany AH.

J Matern Fetal Neonatal Med. 2017 Jun;30(12):1476-1483. doi: 10.1080/14767058.2016.1219994. Epub 2016 Aug 23.

PMID:
27484181
9.

Employment of broad range 16S rDNA PCR and sequencing in the detection of aetiological agents of meningitis.

Xu J, Moore JE, Millar BC, Webb H, Shields MD, Goldsmith CE.

New Microbiol. 2005 Apr;28(2):135-43.

PMID:
16035258
10.

Rapid sensitive molecular diagnosis of pyogenic spinal infections using methicillin-resistant Staphylococcus-specific polymerase chain reaction and 16S ribosomal RNA gene-based universal polymerase chain reaction.

Choe H, Aota Y, Kobayashi N, Nakamura Y, Wakayama Y, Inaba Y, Saito T.

Spine J. 2014 Feb 1;14(2):255-62. doi: 10.1016/j.spinee.2013.10.044. Epub 2013 Nov 12.

PMID:
24231777
11.

Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice.

Jenkins C, Ling CL, Ciesielczuk HL, Lockwood J, Hopkins S, McHugh TD, Gillespie SH, Kibbler CC.

J Med Microbiol. 2012 Apr;61(Pt 4):483-8. doi: 10.1099/jmm.0.030387-0. Epub 2011 Dec 8.

PMID:
22160310
12.

Comparison of two commercial broad-range PCR and sequencing assays for identification of bacteria in culture-negative clinical samples.

Stavnsbjerg C, Frimodt-Møller N, Moser C, Bjarnsholt T.

BMC Infect Dis. 2017 Mar 27;17(1):233. doi: 10.1186/s12879-017-2333-9.

13.

Multiplex real-time PCR assay for rapid detection of methicillin-resistant staphylococci directly from positive blood cultures.

Wang HY, Kim S, Kim J, Park SD, Uh Y, Lee H.

J Clin Microbiol. 2014 Jun;52(6):1911-20. doi: 10.1128/JCM.00389-14. Epub 2014 Mar 19.

14.

[Comparison of four different primer sets for detection of Helicobacter pylori in gastric biopsies and oral samples by using real-time PCR].

Diouf A, Martinez-Gomis J, Miquel M, Quesada M, Lario S, Sixou M.

Pathol Biol (Paris). 2009 Feb;57(1):30-5. doi: 10.1016/j.patbio.2008.07.008. Epub 2008 Oct 7. French.

PMID:
18842355
15.

Broad-range real-time PCR assay for detection of bacterial DNA in ocular samples from infectious endophthalmitis.

Ogawa M, Sugita S, Shimizu N, Watanabe K, Nakagawa I, Mochizuki M.

Jpn J Ophthalmol. 2012 Nov;56(6):529-35. doi: 10.1007/s10384-012-0174-z. Epub 2012 Aug 31.

PMID:
22936171
16.

Detection of bacteria in platelet concentrates: comparison of broad-range real-time 16S rDNA polymerase chain reaction and automated culturing.

Mohammadi T, Pietersz RN, Vandenbroucke-Grauls CM, Savelkoul PH, Reesink HW.

Transfusion. 2005 May;45(5):731-6.

PMID:
15847662
17.

Rapid detection and identification of clinically important bacteria by high-resolution melting analysis after broad-range ribosomal RNA real-time PCR.

Cheng JC, Huang CL, Lin CC, Chen CC, Chang YC, Chang SS, Tseng CP.

Clin Chem. 2006 Nov;52(11):1997-2004. Epub 2006 Sep 21.

18.

Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection.

Moore MS, McCarroll MG, McCann CD, May L, Younes N, Jordan JA.

J Clin Microbiol. 2016 Jan;54(1):99-105. doi: 10.1128/JCM.02394-15. Epub 2015 Oct 28.

19.

Systematic use of universal 16S rRNA gene polymerase chain reaction (PCR) and sequencing for processing pleural effusions improves conventional culture techniques.

Insa R, Marín M, Martín A, Martín-Rabadán P, Alcalá L, Cercenado E, Calatayud L, Liñares J, Bouza E.

Medicine (Baltimore). 2012 Mar;91(2):103-10. doi: 10.1097/MD.0b013e31824dfdb0.

20.

Real-time quantitative broad-range PCR assay for detection of the 16S rRNA gene followed by sequencing for species identification.

Zucol F, Ammann RA, Berger C, Aebi C, Altwegg M, Niggli FK, Nadal D.

J Clin Microbiol. 2006 Aug;44(8):2750-9.

Supplemental Content

Support Center