Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance.

Wareham LK, Begg R, Jesse HE, Van Beilen JW, Ali S, Svistunenko D, McLean S, Hellingwerf KJ, Sanguinetti G, Poole RK.

Antioxid Redox Signal. 2016 Jun 10;24(17):1013-28. doi: 10.1089/ars.2015.6501. Epub 2016 Mar 30.

2.

The Broad-Spectrum Antimicrobial Potential of [Mn(CO)4(S2CNMe(CH2CO2H))], a Water-Soluble CO-Releasing Molecule (CORM-401): Intracellular Accumulation, Transcriptomic and Statistical Analyses, and Membrane Polarization.

Wareham LK, McLean S, Begg R, Rana N, Ali S, Kendall JJ, Sanguinetti G, Mann BE, Poole RK.

Antioxid Redox Signal. 2018 May 10;28(14):1286-1308. doi: 10.1089/ars.2017.7239. Epub 2017 Sep 28.

3.

Analysis of the bacterial response to Ru(CO)3Cl(Glycinate) (CORM-3) and the inactivated compound identifies the role played by the ruthenium compound and reveals sulfur-containing species as a major target of CORM-3 action.

McLean S, Begg R, Jesse HE, Mann BE, Sanguinetti G, Poole RK.

Antioxid Redox Signal. 2013 Dec 10;19(17):1999-2012. doi: 10.1089/ars.2012.5103. Epub 2013 Apr 16.

4.

Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators.

Davidge KS, Sanguinetti G, Yee CH, Cox AG, McLeod CW, Monk CE, Mann BE, Motterlini R, Poole RK.

J Biol Chem. 2009 Feb 13;284(7):4516-24. doi: 10.1074/jbc.M808210200. Epub 2008 Dec 17.

5.

Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli.

Nobre LS, Al-Shahrour F, Dopazo J, Saraiva LM.

Microbiology. 2009 Mar;155(Pt 3):813-24. doi: 10.1099/mic.0.023911-0.

PMID:
19246752
7.

Antimicrobial Activity of the Manganese Photoactivated Carbon Monoxide-Releasing Molecule [Mn(CO)3(tpa-κ(3)N)](+) Against a Pathogenic Escherichia coli that Causes Urinary Infections.

Tinajero-Trejo M, Rana N, Nagel C, Jesse HE, Smith TW, Wareham LK, Hippler M, Schatzschneider U, Poole RK.

Antioxid Redox Signal. 2016 May 10;24(14):765-80. doi: 10.1089/ars.2015.6484. Epub 2016 Mar 30.

8.

Examining the antimicrobial activity and toxicity to animal cells of different types of CO-releasing molecules.

Nobre LS, Jeremias H, Romão CC, Saraiva LM.

Dalton Trans. 2016 Jan 28;45(4):1455-66. doi: 10.1039/c5dt02238j.

PMID:
26673556
9.

A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ3N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli.

Rana N, Jesse HE, Tinajero-Trejo M, Butler JA, Tarlit JD, von Und Zur Muhlen ML, Nagel C, Schatzschneider U, Poole RK.

Microbiology. 2017 Oct;163(10):1477-1489. doi: 10.1099/mic.0.000526. Epub 2017 Sep 28.

10.

CO-Releasing Molecules Have Nonheme Targets in Bacteria: Transcriptomic, Mathematical Modeling and Biochemical Analyses of CORM-3 [Ru(CO)3Cl(glycinate)] Actions on a Heme-Deficient Mutant of Escherichia coli.

Wilson JL, Wareham LK, McLean S, Begg R, Greaves S, Mann BE, Sanguinetti G, Poole RK.

Antioxid Redox Signal. 2015 Jul 10;23(2):148-62. doi: 10.1089/ars.2014.6151. Epub 2015 Apr 28.

11.

Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses.

Levanon SS, San KY, Bennett GN.

Biotechnol Bioeng. 2005 Mar 5;89(5):556-64.

PMID:
15669087
12.

A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3.

Southam HM, Smith TW, Lyon RL, Liao C, Trevitt CR, Middlemiss LA, Cox FL, Chapman JA, El-Khamisy SF, Hippler M, Williamson MP, Henderson PJF, Poole RK.

Redox Biol. 2018 Sep;18:114-123. doi: 10.1016/j.redox.2018.06.008. Epub 2018 Jun 30.

13.

Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or bo'' to inhibition by the carbon monoxide-releasing molecule, CORM-3: N-acetylcysteine reduces CO-RM uptake and inhibition of respiration.

Jesse HE, Nye TL, McLean S, Green J, Mann BE, Poole RK.

Biochim Biophys Acta. 2013 Sep;1834(9):1693-703. doi: 10.1016/j.bbapap.2013.04.019. Epub 2013 Apr 26.

14.

CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era.

Wareham LK, Poole RK, Tinajero-Trejo M.

J Biol Chem. 2015 Jul 31;290(31):18999-9007. doi: 10.1074/jbc.R115.642926. Epub 2015 Jun 8. Review.

15.

Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls.

Tinajero-Trejo M, Denby KJ, Sedelnikova SE, Hassoubah SA, Mann BE, Poole RK.

J Biol Chem. 2014 Oct 24;289(43):29471-82. doi: 10.1074/jbc.M114.573444. Epub 2014 Sep 5.

16.

Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli.

Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH Jr.

J Bacteriol. 2005 Feb;187(3):980-90.

17.

Catecholate siderophores protect bacteria from pyochelin toxicity.

Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, Kolter R, Vincent PA.

PLoS One. 2012;7(10):e46754. doi: 10.1371/journal.pone.0046754. Epub 2012 Oct 5.

19.
20.

Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments.

Zhu J, Shalel-Levanon S, Bennett G, San KY.

Metab Eng. 2006 Nov;8(6):619-27. Epub 2006 Aug 7.

PMID:
16962353

Supplemental Content

Support Center