Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Draft Genome Sequence of Proteus mirabilis NO-051/03, Representative of a Multidrug-Resistant Clone Spreading in Europe and Expressing the CMY-16 AmpC-Type β-Lactamase.

D'Andrea MM, Giani T, Henrici De Angelis L, Ciacci N, Gniadkowski M, Miriagou V, Torricelli F, Rossolini GM.

Genome Announc. 2016 Feb 11;4(1). pii: e01702-15. doi: 10.1128/genomeA.01702-15.

2.

CMY-16, a novel acquired AmpC-type beta-lactamase of the CMY/LAT lineage in multifocal monophyletic isolates of Proteus mirabilis from northern Italy.

D'Andrea MM, Nucleo E, Luzzaro F, Giani T, Migliavacca R, Vailati F, Kroumova V, Pagani L, Rossolini GM.

Antimicrob Agents Chemother. 2006 Feb;50(2):618-24.

3.

Evolution and spread of a multidrug-resistant Proteus mirabilis clone with chromosomal AmpC-type cephalosporinases in Europe.

D'Andrea MM, Literacka E, Zioga A, Giani T, Baraniak A, Fiett J, Sadowy E, Tassios PT, Rossolini GM, Gniadkowski M, Miriagou V.

Antimicrob Agents Chemother. 2011 Jun;55(6):2735-42. doi: 10.1128/AAC.01736-10. Epub 2011 Mar 14.

4.

Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.

Ostria-Hernández ML, Sánchez-Vallejo CJ, Ibarra JA, Castro-Escarpulli G.

BMC Res Notes. 2015 Aug 4;8:332. doi: 10.1186/s13104-015-1285-7.

6.

Four variants of the Citrobacter freundii AmpC-Type cephalosporinases, including novel enzymes CMY-14 and CMY-15, in a Proteus mirabilis clone widespread in Poland.

Literacka E, Empel J, Baraniak A, Sadowy E, Hryniewicz W, Gniadkowski M.

Antimicrob Agents Chemother. 2004 Nov;48(11):4136-43.

7.

First report of an OXA-48-producing multidrug-resistant Proteus mirabilis strain from Gaza, Palestine.

Chen L, Al Laham N, Chavda KD, Mediavilla JR, Jacobs MR, Bonomo RA, Kreiswirth BN.

Antimicrob Agents Chemother. 2015 Jul;59(7):4305-7. doi: 10.1128/AAC.00565-15. Epub 2015 Apr 20.

8.

Chromosomally encoded ampC-type beta-lactamase in a clinical isolate of Proteus mirabilis.

Bret L, Chanal-Claris C, Sirot D, Chaibi EB, Labia R, Sirot J.

Antimicrob Agents Chemother. 1998 May;42(5):1110-4.

9.

Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis.

Mata C, Navarro F, Miró E, Walsh TR, Mirelis B, Toleman M.

J Antimicrob Chemother. 2011 Oct;66(10):2266-70. doi: 10.1093/jac/dkr286. Epub 2011 Jul 13.

PMID:
21752830
10.

Spread of multidrug-resistant Proteus mirabilis isolates producing an AmpC-type beta-lactamase: epidemiology and clinical management.

Luzzaro F, Brigante G, D'Andrea MM, Pini B, Giani T, Mantengoli E, Rossolini GM, Toniolo A.

Int J Antimicrob Agents. 2009 Apr;33(4):328-33. doi: 10.1016/j.ijantimicag.2008.09.007. Epub 2008 Dec 17.

PMID:
19095415
11.

Draft genome sequence of a multidrug-resistant Escherichia coli ST189 carrying several acquired antimicrobial resistance genes obtained from Brazilian soil.

Furlan JPR, Stehling EG.

J Glob Antimicrob Resist. 2019 Jun;17:321-322. doi: 10.1016/j.jgar.2019.05.018. Epub 2019 May 22.

PMID:
31125625
12.

[Plasmid-mediated AMPc producing Proteus mirabilis in the Health Care Area of Santiago de Compostela: molecular and epidemiological analysis by rep-PCR and MALDI-TOF].

Treviño M, Navarro D, Barbeito G, Areses P, García-Riestra C, Regueiro BJ.

Rev Esp Quimioter. 2012 Jun;25(2):122-8. Spanish.

13.

An Increase in the clinical isolation of acquired AmpC β-lactamase-producing Klebsiella pneumoniae in Korea from 2007 to 2010.

Park MJ, Kim TK, Song W, Kim JS, Kim HS, Lee J.

Ann Lab Med. 2013 Sep;33(5):353-5. doi: 10.3343/alm.2013.33.5.353. Epub 2013 Aug 8.

15.

Integrons, β-lactamase and qnr genes in multidrug resistant clinical isolates of Proteus mirabilis and P. vulgaris.

Mokracka J, Gruszczyńska B, Kaznowski A.

APMIS. 2012 Dec;120(12):950-8. doi: 10.1111/j.1600-0463.2012.02923.x. Epub 2012 Jul 7.

PMID:
23030307
16.

Sporadic occurrence of CMY-2-producing multidrug-resistant Escherichia coli of ST-complexes 38 and 448, and ST131 in Norway.

Naseer U, Haldorsen B, Simonsen GS, Sundsfjord A.

Clin Microbiol Infect. 2010 Feb;16(2):171-8. doi: 10.1111/j.1469-0691.2009.02861.x. Epub 2009 Jun 22.

17.

CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis.

Price VJ, Huo W, Sharifi A, Palmer KL.

mSphere. 2016 Jun 1;1(3). pii: e00064-16. doi: 10.1128/mSphere.00064-16. eCollection 2016 May-Jun.

18.

Draft Genome Sequence of the First New Delhi Metallo-β-Lactamase (NDM-1)-Producing Escherichia coli Strain Isolated in Peru.

Tamariz J, Llanos C, Seas C, Montenegro P, Lagos J, Fernandes MR, Cerdeira L, Lincopan N.

Genome Announc. 2018 Mar 29;6(13). pii: e00199-18. doi: 10.1128/genomeA.00199-18.

19.

Epidemiology of extended-spectrum β-lactamase, AmpC, and carbapenemase production in Proteus mirabilis.

Datta P, Gupta V, Arora S, Garg S, Chander J.

Jpn J Infect Dis. 2014;67(1):44-6.

20.

Draft genome sequence of a multidrug-resistant tetA/IncF-harbouring Escherichia coli ST906 obtained from a soil cultivated with jaboticaba (Plinia cauliflora).

Furlan JPR, Stehling EG.

J Glob Antimicrob Resist. 2019 Mar;16:181-182. doi: 10.1016/j.jgar.2019.01.026. Epub 2019 Jan 24.

PMID:
30685459

Supplemental Content

Support Center