Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Biostable electrospun microfibrous scaffolds mitigate hypertrophic scar contraction in an immune-competent murine model.

Lorden ER, Miller KJ, Ibrahim MM, Bashirov L, Hammett E, Chakraborty S, Quiles-Torres C, Selim MA, Leong KW, Levinson H.

Acta Biomater. 2016 Mar 1;32:100-109. doi: 10.1016/j.actbio.2015.12.025. Epub 2015 Dec 17.

PMID:
26708709
2.

Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold.

Lorden ER, Miller KJ, Bashirov L, Ibrahim MM, Hammett E, Jung Y, Medina MA, Rastegarpour A, Selim MA, Leong KW, Levinson H.

Biomaterials. 2015 Mar;43:61-70. doi: 10.1016/j.biomaterials.2014.12.003. Epub 2015 Jan 7.

PMID:
25591962
3.

Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

Bonvallet PP, Schultz MJ, Mitchell EH, Bain JL, Culpepper BK, Thomas SJ, Bellis SL.

PLoS One. 2015 Mar 20;10(3):e0122359. doi: 10.1371/journal.pone.0122359. eCollection 2015. Erratum in: PLoS One. 2015;10(4):e0126541.

4.

A novel immune competent murine hypertrophic scar contracture model: a tool to elucidate disease mechanism and develop new therapies.

Ibrahim MM, Bond J, Bergeron A, Miller KJ, Ehanire T, Quiles C, Lorden ER, Medina MA, Fisher M, Klitzman B, Selim MA, Leong KW, Levinson H.

Wound Repair Regen. 2014 Nov-Dec;22(6):755-64. doi: 10.1111/wrr.12238. Epub 2015 Jan 8.

5.

Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin.

Sun X, Cheng L, Zhu W, Hu C, Jin R, Sun B, Shi Y, Zhang Y, Cui W.

Colloids Surf B Biointerfaces. 2014 Mar 1;115:61-70. doi: 10.1016/j.colsurfb.2013.11.030. Epub 2013 Nov 24.

PMID:
24333554
6.

Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars.

Cheng L, Sun X, Zhao X, Wang L, Yu J, Pan G, Li B, Yang H, Zhang Y, Cui W.

Biomaterials. 2016 Mar;83:169-81. doi: 10.1016/j.biomaterials.2016.01.002. Epub 2016 Jan 4.

PMID:
26774564
7.

The effect of myofibroblast on contracture of hypertrophic scar.

Shin D, Minn KW.

Plast Reconstr Surg. 2004 Feb;113(2):633-40.

PMID:
14758226
8.

Mechanical tension stimulates the transdifferentiation of fibroblasts into myofibroblasts in human burn scars.

Junker JP, Kratz C, Tollbäck A, Kratz G.

Burns. 2008 Nov;34(7):942-6. doi: 10.1016/j.burns.2008.01.010. Epub 2008 May 8.

PMID:
18472340
9.

Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation.

Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE.

Wound Repair Regen. 2016 Jul;24(4):644-56. doi: 10.1111/wrr.12442. Epub 2016 Jun 14.

PMID:
27169512
10.

An in-situ forming skin substitute improves healing outcome in a hypertrophic scar model.

Hartwell R, Poormasjedi-Meibod MS, Chavez-Munoz C, Jalili RB, Hossenini-Tabatabaei A, Ghahary A.

Tissue Eng Part A. 2015 Mar;21(5-6):1085-94. doi: 10.1089/ten.TEA.2014.0271. Epub 2015 Feb 19.

11.

Control of wound contraction. Basic and clinical features.

Nedelec B, Ghahary A, Scott PG, Tredget EE.

Hand Clin. 2000 May;16(2):289-302. Review.

PMID:
10791174
12.

Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.

Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU.

J Mech Behav Biomed Mater. 2014 Nov;39:95-110. doi: 10.1016/j.jmbbm.2014.06.019. Epub 2014 Jul 18.

13.

Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis - Keloids and hypertrophic scars may be vascular disorders.

Ogawa R, Akaishi S.

Med Hypotheses. 2016 Nov;96:51-60. doi: 10.1016/j.mehy.2016.09.024. Epub 2016 Sep 28.

14.

Myofibroblasts and apoptosis in human hypertrophic scars: the effect of interferon-alpha2b.

Nedelec B, Shankowsky H, Scott PG, Ghahary A, Tredget EE.

Surgery. 2001 Nov;130(5):798-808.

PMID:
11685189
15.

Angiotensin II stimulates canonical TGF-β signaling pathway through angiotensin type 1 receptor to induce granulation tissue contraction.

Ehanire T, Ren L, Bond J, Medina M, Li G, Bashirov L, Chen L, Kokosis G, Ibrahim M, Selim A, Blobe GC, Levinson H.

J Mol Med (Berl). 2015 Mar;93(3):289-302. doi: 10.1007/s00109-014-1211-9. Epub 2014 Oct 28. Erratum in: J Mol Med (Berl). 2015 Mar;93(3):303.

16.

Injectable polyurethane composite scaffolds delay wound contraction and support cellular infiltration and remodeling in rat excisional wounds.

Adolph EJ, Hafeman AE, Davidson JM, Nanney LB, Guelcher SA.

J Biomed Mater Res A. 2012 Feb;100(2):450-61. doi: 10.1002/jbm.a.33266. Epub 2011 Nov 21.

17.

Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars.

Bellemare J, Roberge CJ, Bergeron D, Lopez-Vallé CA, Roy M, Moulin VJ.

J Pathol. 2005 May;206(1):1-8.

PMID:
15772942
18.

Injected biodegradable polyurethane scaffolds support tissue infiltration and delay wound contraction in a porcine excisional model.

Adolph EJ, Guo R, Pollins AC, Zienkiewicz K, Cardwell N, Davidson JM, Guelcher SA, Nanney LB.

J Biomed Mater Res B Appl Biomater. 2016 Nov;104(8):1679-1690. doi: 10.1002/jbm.b.33515. Epub 2015 Sep 7.

19.

Periostin induces fibroblast proliferation and myofibroblast persistence in hypertrophic scarring.

Crawford J, Nygard K, Gan BS, O'Gorman DB.

Exp Dermatol. 2015 Feb;24(2):120-6. doi: 10.1111/exd.12601.

PMID:
25421393
20.

Inflammatory response and biomechanical properties of coaxial scaffolds for engineered skin in vitro and post-grafting.

Blackstone BN, Hahn JM, McFarland KL, DeBruler DM, Supp DM, Powell HM.

Acta Biomater. 2018 Oct 15;80:247-257. doi: 10.1016/j.actbio.2018.09.014. Epub 2018 Sep 12.

PMID:
30218778

Supplemental Content

Support Center