Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 337

1.

Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

Paul KI, Roxburgh SH, Chave J, England JR, Zerihun A, Specht A, Lewis T, Bennett LT, Baker TG, Adams MA, Huxtable D, Montagu KD, Falster DS, Feller M, Sochacki S, Ritson P, Bastin G, Bartle J, Wildy D, Hobbs T, Larmour J, Waterworth R, Stewart HT, Jonson J, Forrester DI, Applegate G, Mendham D, Bradford M, O'Grady A, Green D, Sudmeyer R, Rance SJ, Turner J, Barton C, Wenk EH, Grove T, Attiwill PM, Pinkard E, Butler D, Brooksbank K, Spencer B, Snowdon P, O'Brien N, Battaglia M, Cameron DM, Hamilton S, McAuthur G, Sinclair J.

Glob Chang Biol. 2016 Jun;22(6):2106-24. doi: 10.1111/gcb.13201. Epub 2016 Mar 29.

PMID:
26683241
2.

Measurements of stem diameter: implications for individual- and stand-level errors.

Paul KI, Larmour JS, Roxburgh SH, England JR, Davies MJ, Luck HD.

Environ Monit Assess. 2017 Aug;189(8):416. doi: 10.1007/s10661-017-6109-x. Epub 2017 Jul 26.

PMID:
28748427
3.

Improved allometric models to estimate the aboveground biomass of tropical trees.

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G.

Glob Chang Biol. 2014 Oct;20(10):3177-90. doi: 10.1111/gcb.12629. Epub 2014 Jun 21.

PMID:
24817483
4.

Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado: Re-evaluating allometric equations and environmental influences.

Roitman I, Bustamante MMC, Haidar RF, Shimbo JZ, Abdala GC, Eiten G, Fagg CW, Felfili MC, Felfili JM, Jacobson TKB, Lindoso GS, Keller M, Lenza E, Miranda SC, Pinto JRR, Rodrigues AA, Delitti WBC, Roitman P, Sampaio JM.

PLoS One. 2018 Aug 1;13(8):e0196742. doi: 10.1371/journal.pone.0196742. eCollection 2018.

5.

A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models.

Vieilledent G, Vaudry R, Andriamanohisoa SF, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J, Rasamoelina M.

Ecol Appl. 2012 Mar;22(2):572-83.

PMID:
22611855
6.

Stand-level patterns of carbon fluxes and partitioning in a Eucalyptus grandis plantation across a gradient of productivity, in Sao Paulo State, Brazil.

Campoe OC, Stape JL, Laclau JP, Marsden C, Nouvellon Y.

Tree Physiol. 2012 Jun;32(6):696-706. doi: 10.1093/treephys/tps038. Epub 2012 Apr 27.

PMID:
22543478
7.

Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil.

Nouvellon Y, Laclau JP, Epron D, Le Maire G, Bonnefond JM, Gonçalves JL, Bouillet JP.

Tree Physiol. 2012 Jun;32(6):680-95. doi: 10.1093/treephys/tps041. Epub 2012 May 14.

PMID:
22588515
8.

Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

Babst F, Bouriaud O, Papale D, Gielen B, Janssens IA, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Köstner B, Grünwald T, Seufert G, Ciais P, Frank D.

New Phytol. 2014 Mar;201(4):1289-303. doi: 10.1111/nph.12589. Epub 2013 Nov 11.

9.

Tree allometry and improved estimation of carbon stocks and balance in tropical forests.

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T.

Oecologia. 2005 Aug;145(1):87-99. Epub 2005 Jun 22.

PMID:
15971085
10.

Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

Ishihara MI, Utsugi H, Tanouchi H, Aiba M, Kurokawa H, Onoda Y, Nagano M, Umehara T, Ando M, Miyata R, Hiura T.

Ecol Appl. 2015 Jul;25(5):1433-46.

PMID:
26485966
11.

Field methods for sampling tree height for tropical forest biomass estimation.

Sullivan MJP, Lewis SL, Hubau W, Qie L, Baker TR, Banin LF, Chave J, Cuni-Sanchez A, Feldpausch TR, Lopez-Gonzalez G, Arets E, Ashton P, Bastin JF, Berry NJ, Bogaert J, Boot R, Brearley FQ, Brienen R, Burslem DFRP, de Canniere C, Chudomelová M, Dančák M, Ewango C, Hédl R, Lloyd J, Makana JR, Malhi Y, Marimon BS, Junior BHM, Metali F, Moore S, Nagy L, Vargas PN, Pendry CA, Ramírez-Angulo H, Reitsma J, Rutishauser E, Salim KA, Sonké B, Sukri RS, Sunderland T, Svátek M, Umunay PM, Martinez RV, Vernimmen RRE, Torre EV, Vleminckx J, Vos V, Phillips OL.

Methods Ecol Evol. 2018 May;9(5):1179-1189. doi: 10.1111/2041-210X.12962. Epub 2018 Feb 13.

12.

Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa.

Imani G, Boyemba F, Lewis S, Nabahungu NL, Calders K, Zapfack L, Riera B, Balegamire C, Cuni-Sanchez A.

PLoS One. 2017 Jun 15;12(6):e0179653. doi: 10.1371/journal.pone.0179653. eCollection 2017.

13.

Biomass allometric equation and expansion factor for a mountain moist evergreen forest in Mozambique.

Lisboa SN, Guedes BS, Ribeiro N, Sitoe A.

Carbon Balance Manag. 2018 Nov 26;13(1):23. doi: 10.1186/s13021-018-0111-7.

14.

Explaining biomass growth of tropical canopy trees: the importance of sapwood.

van der Sande MT, Zuidema PA, Sterck F.

Oecologia. 2015 Apr;177(4):1145-55. doi: 10.1007/s00442-015-3220-y. Epub 2015 Jan 30.

15.

A reassessment of carbon content in tropical trees.

Martin AR, Thomas SC.

PLoS One. 2011;6(8):e23533. doi: 10.1371/journal.pone.0023533. Epub 2011 Aug 17.

16.

Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

Johnson MO, Galbraith D, Gloor M, De Deurwaerder H, Guimberteau M, Rammig A, Thonicke K, Verbeeck H, von Randow C, Monteagudo A, Phillips OL, Brienen RJ, Feldpausch TR, Lopez Gonzalez G, Fauset S, Quesada CA, Christoffersen B, Ciais P, Sampaio G, Kruijt B, Meir P, Moorcroft P, Zhang K, Alvarez-Davila E, Alves de Oliveira A, Amaral I, Andrade A, Aragao LE, Araujo-Murakami A, Arets EJ, Arroyo L, Aymard GA, Baraloto C, Barroso J, Bonal D, Boot R, Camargo J, Chave J, Cogollo A, Cornejo Valverde F, Lola da Costa AC, Di Fiore A, Ferreira L, Higuchi N, Honorio EN, Killeen TJ, Laurance SG, Laurance WF, Licona J, Lovejoy T, Malhi Y, Marimon B, Marimon BH Junior, Matos DC, Mendoza C, Neill DA, Pardo G, Peña-Claros M, Pitman NC, Poorter L, Prieto A, Ramirez-Angulo H, Roopsind A, Rudas A, Salomao RP, Silveira M, Stropp J, Ter Steege H, Terborgh J, Thomas R, Toledo M, Torres-Lezama A, van der Heijden GM, Vasquez R, Guimarães Vieira IC, Vilanova E, Vos VA, Baker TR.

Glob Chang Biol. 2016 Dec;22(12):3996-4013. doi: 10.1111/gcb.13315. Epub 2016 May 19.

17.

Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests.

Zhao J, Kang F, Wang L, Yu X, Zhao W, Song X, Zhang Y, Chen F, Sun Y, He T, Han H.

PLoS One. 2014 Apr 15;9(4):e94966. doi: 10.1371/journal.pone.0094966. eCollection 2014. Erratum in: PLoS One. 2014;9(7):e104464.

18.

Revisiting a universal airborne light detection and ranging approach for tropical forest carbon mapping: scaling-up from tree to stand to landscape.

Vincent G, Sabatier D, Rutishauser E.

Oecologia. 2014 Jun;175(2):439-43. doi: 10.1007/s00442-014-2913-y. Epub 2014 Mar 11.

PMID:
24615493
19.

Root-shoot allometry of tropical forest trees determined in a large-scale aeroponic system.

Eshel A, Grünzweig JM.

Ann Bot. 2013 Jul;112(2):291-6. doi: 10.1093/aob/mcs275. Epub 2012 Dec 18.

20.

Structure and function of shisham forests in central Himalaya, India: dry matter dynamics.

Lodhiyal N, Lodhiyal LS, Pangtey YP.

Ann Bot. 2002 Jan;89(1):41-54.

Supplemental Content

Support Center