Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin.

Helmich KE, Pereira JH, Gall DL, Heins RA, McAndrew RP, Bingman C, Deng K, Holland KC, Noguera DR, Simmons BA, Sale KL, Ralph J, Donohue TJ, Adams PD, Phillips GN Jr.

J Biol Chem. 2016 Mar 4;291(10):5234-46. doi: 10.1074/jbc.M115.694307. Epub 2015 Dec 4.

2.

Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6.

Pereira JH, Heins RA, Gall DL, McAndrew RP, Deng K, Holland KC, Donohue TJ, Noguera DR, Simmons BA, Sale KL, Ralph J, Adams PD.

J Biol Chem. 2016 May 6;291(19):10228-38. doi: 10.1074/jbc.M115.700427. Epub 2016 Mar 3.

3.

A group of sequence-related sphingomonad enzymes catalyzes cleavage of β-aryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers.

Gall DL, Ralph J, Donohue TJ, Noguera DR.

Environ Sci Technol. 2014 Oct 21;48(20):12454-63. doi: 10.1021/es503886d. Epub 2014 Oct 1.

4.

A heterodimeric glutathione S-transferase that stereospecifically breaks lignin's β(R)-aryl ether bond reveals the diversity of bacterial β-etherases.

Kontur WS, Olmsted CN, Yusko LM, Niles AV, Walters KA, Beebe ET, Vander Meulen KA, Karlen SD, Gall DL, Noguera DR, Donohue TJ.

J Biol Chem. 2019 Feb 8;294(6):1877-1890. doi: 10.1074/jbc.RA118.006548. Epub 2018 Dec 12.

5.

Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway.

Gall DL, Kim H, Lu F, Donohue TJ, Noguera DR, Ralph J.

J Biol Chem. 2014 Mar 21;289(12):8656-67. doi: 10.1074/jbc.M113.536250. Epub 2014 Feb 7.

6.

In Vitro Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units.

Gall DL, Kontur WS, Lan W, Kim H, Li Y, Ralph J, Donohue TJ, Noguera DR.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e02076-17. doi: 10.1128/AEM.02076-17. Print 2018 Feb 1.

7.

Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate.

Granja-Travez RS, Wilkinson RC, Persinoti GF, Squina FM, Fülöp V, Bugg TDH.

FEBS J. 2018 May;285(9):1684-1700. doi: 10.1111/febs.14437. Epub 2018 Mar 30.

8.

Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives.

Husarcíková J, Voß H, Domínguez de María P, Schallmey A.

Appl Microbiol Biotechnol. 2018 Jul;102(13):5391-5401. doi: 10.1007/s00253-018-9040-3. Epub 2018 May 4. Review.

PMID:
29728724
9.

A bacterial enzyme degrading the model lignin compound beta-etherase is a member of the glutathione-S-transferase superfamily.

Masai E, Katayama Y, Kubota S, Kawai S, Yamasaki M, Morohoshi N.

FEBS Lett. 1993 May 24;323(1-2):135-40.

10.

Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the β-aryl ether bond of lignin.

Kontur WS, Bingman CA, Olmsted CN, Wassarman DR, Ulbrich A, Gall DL, Smith RW, Yusko LM, Fox BG, Noguera DR, Coon JJ, Donohue TJ.

J Biol Chem. 2018 Apr 6;293(14):4955-4968. doi: 10.1074/jbc.RA117.001268. Epub 2018 Feb 15.

11.

Roles of the enantioselective glutathione S-transferases in cleavage of beta-aryl ether.

Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M.

J Bacteriol. 2003 Mar;185(6):1768-75.

12.

Effect of sulfonated lignin on enzymatic activity of the ligninolytic enzymes Cα-dehydrogenase LigD and β-etherase LigF.

Wang C, Ouyang X, Su S, Liang X, Zhang C, Wang W, Yuan Q, Li Q.

Enzyme Microb Technol. 2016 Nov;93-94:59-69. doi: 10.1016/j.enzmictec.2016.07.008. Epub 2016 Jul 25.

PMID:
27702486
13.

From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers.

Picart P, Müller C, Mottweiler J, Wiermans L, Bolm C, Domínguez de María P, Schallmey A.

ChemSusChem. 2014 Nov;7(11):3164-71. doi: 10.1002/cssc.201402465. Epub 2014 Sep 3.

PMID:
25186983
14.

Degradation of lignin β-aryl ether units in Arabidopsis thaliana expressing LigD, LigF and LigG from Sphingomonas paucimobilis SYK-6.

Mnich E, Vanholme R, Oyarce P, Liu S, Lu F, Goeminne G, Jørgensen B, Motawie MS, Boerjan W, Ralph J, Ulvskov P, Møller BL, Bjarnholt N, Harholt J.

Plant Biotechnol J. 2017 May;15(5):581-593. doi: 10.1111/pbi.12655. Epub 2016 Nov 29.

15.

From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization.

Picart P, de María PD, Schallmey A.

Front Microbiol. 2015 Sep 4;6:916. doi: 10.3389/fmicb.2015.00916. eCollection 2015. Review.

16.

Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase ω class.

Meux E, Prosper P, Masai E, Mulliert G, Dumarçay S, Morel M, Didierjean C, Gelhaye E, Favier F.

FEBS Lett. 2012 Nov 16;586(22):3944-50. doi: 10.1016/j.febslet.2012.09.036. Epub 2012 Oct 8.

17.

Whole-cell cascade for the preparation of enantiopure β-O-4 aryl ether compounds with glutathione recycling.

Husarcikova J, Schallmey A.

J Biotechnol. 2019 Mar 10;293:1-7. doi: 10.1016/j.jbiotec.2019.01.002. Epub 2019 Jan 28.

PMID:
30703467
18.

Bacterial Catabolism of β-Hydroxypropiovanillone and β-Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol-β-Aryl Ether in Lignin.

Higuchi Y, Aoki S, Takenami H, Kamimura N, Takahashi K, Hishiyama S, Lancefield CS, Ojo OS, Katayama Y, Westwood NJ, Masai E.

Appl Environ Microbiol. 2018 Mar 19;84(7). pii: e02670-17. doi: 10.1128/AEM.02670-17. Print 2018 Apr 1.

19.

Biochemical transformation of lignin for deriving valued commodities from lignocellulose.

Gall DL, Ralph J, Donohue TJ, Noguera DR.

Curr Opin Biotechnol. 2017 Jun;45:120-126. doi: 10.1016/j.copbio.2017.02.015. Epub 2017 Mar 24. Review.

20.

The bacterial meta-cleavage hydrolase LigY belongs to the amidohydrolase superfamily, not to the α/β-hydrolase superfamily.

Kuatsjah E, Chan ACK, Kobylarz MJ, Murphy MEP, Eltis LD.

J Biol Chem. 2017 Nov 3;292(44):18290-18302. doi: 10.1074/jbc.M117.797696. Epub 2017 Sep 20.

Supplemental Content

Support Center