Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 192

1.

Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure.

Huang L, Li Y, Wei Z, Li J.

Sci Rep. 2015 Nov 10;5:16448. doi: 10.1038/srep16448.

2.

Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure.

Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li SS.

J Phys Chem Lett. 2015 Jul 2;6(13):2483-8. doi: 10.1021/acs.jpclett.5b00976. Epub 2015 Jun 16.

PMID:
26266723
3.

Tunable band offsets in the BP/P4O10 van der Waals heterostructure: first-principles calculations.

Dou W, Huang A, Shi H, Zhang X, Zheng X, Wang M, Xiao Z, Liu L, Chu PK.

Phys Chem Chem Phys. 2018 Dec 5;20(47):29931-29938. doi: 10.1039/c8cp06687f.

PMID:
30475360
4.

Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.

You B, Wang X, Zheng Z, Mi W.

Phys Chem Chem Phys. 2016 Mar 14;18(10):7381-8. doi: 10.1039/c5cp07585h.

PMID:
26899350
5.

MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study.

Wang S, Ren C, Tian H, Yu J, Sun M.

Phys Chem Chem Phys. 2018 May 16;20(19):13394-13399. doi: 10.1039/c8cp00808f.

PMID:
29721569
6.

Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions.

Zhang K, Hu S, Zhang Y, Zhang T, Zhou X, Sun Y, Li TX, Fan HJ, Shen G, Chen X, Dai N.

ACS Nano. 2015 Mar 24;9(3):2704-10. doi: 10.1021/acsnano.5b00547. Epub 2015 Mar 2.

PMID:
25716291
7.

First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures.

Li S, Sun M, Chou JP, Wei J, Xing H, Hu A.

Phys Chem Chem Phys. 2018 Oct 3;20(38):24726-24734. doi: 10.1039/c8cp03508c.

PMID:
30225488
8.

Tuning electronic and optical properties of arsenene/C3N van der Waals heterostructure by vertical strain and external electric field.

Zeng H, Zhao J, Cheng AQ, Zhang L, He Z, Chen RS.

Nanotechnology. 2018 Feb 16;29(7):075201. doi: 10.1088/1361-6528/aaa2e8.

PMID:
29256872
9.

Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure.

Ding YM, Shi JJ, Xia C, Zhang M, Du J, Huang P, Wu M, Wang H, Cen YL, Pan SH.

Nanoscale. 2017 Oct 5;9(38):14682-14689. doi: 10.1039/c7nr02725g.

PMID:
28944803
10.

Band engineering of the MoS2/stanene heterostructure: strain and electrostatic gating.

Xiong W, Xia C, Du J, Wang T, Peng Y, Wei Z, Li J.

Nanotechnology. 2017 May 12;28(19):195702. doi: 10.1088/1361-6528/aa68d8. Epub 2017 Mar 23.

PMID:
28333687
11.

Band structure engineering in a MoS2/PbI2 van der Waals heterostructure via an external electric field.

Ma Y, Zhao X, Wang T, Li W, Wang X, Chang S, Li Y, Zhao M, Dai X.

Phys Chem Chem Phys. 2016 Oct 19;18(41):28466-28473.

PMID:
27722569
12.

Tuning the electronic properties of van der Waals heterostructures composed of black phosphorus and graphitic SiC.

Tang K, Qi W, Li Y, Wang T.

Phys Chem Chem Phys. 2018 Nov 28;20(46):29333-29340. doi: 10.1039/c8cp06170j.

PMID:
30444241
13.

Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure.

Ceballos F, Bellus MZ, Chiu HY, Zhao H.

ACS Nano. 2014 Dec 23;8(12):12717-24. doi: 10.1021/nn505736z. Epub 2014 Nov 24.

PMID:
25402669
14.

Tuning the Carrier Confinement in GeS/Phosphorene van der Waals Heterostructures.

Wang C, Peng L, Qian Q, Du J, Wang S, Huang Y.

Small. 2018 Mar;14(10). doi: 10.1002/smll.201703536. Epub 2018 Jan 11.

PMID:
29323456
15.

Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures.

Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P, Zhang D, Zeng C, Wang X, Hu W, Fan HJ, Shen G, Chen X, Duan X, Chang K, Dai N.

ACS Nano. 2016 Mar 22;10(3):3852-8. doi: 10.1021/acsnano.6b00980. Epub 2016 Mar 9.

PMID:
26950255
16.

Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS2/WS2 van der Waals Heterobilayer.

Pak S, Lee J, Lee YW, Jang AR, Ahn S, Ma KY, Cho Y, Hong J, Lee S, Jeong HY, Im H, Shin HS, Morris SM, Cha S, Sohn JI, Kim JM.

Nano Lett. 2017 Sep 13;17(9):5634-5640. doi: 10.1021/acs.nanolett.7b02513. Epub 2017 Aug 28.

17.

Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

Pierucci D, Henck H, Avila J, Balan A, Naylor CH, Patriarche G, Dappe YJ, Silly MG, Sirotti F, Johnson AT, Asensio MC, Ouerghi A.

Nano Lett. 2016 Jul 13;16(7):4054-61. doi: 10.1021/acs.nanolett.6b00609. Epub 2016 Jun 16.

PMID:
27281693
18.

Ultrafast charge transfer in a type-II MoS2-ReSe2 van der Waals heterostructure.

Zhang L, He D, He J, Fu Y, Bian A, Han X, Liu S, Wang Y, Zhao H.

Opt Express. 2019 Jun 24;27(13):17851-17858. doi: 10.1364/OE.27.017851.

PMID:
31252737
19.

Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors.

Kang J, Jariwala D, Ryder CR, Wells SA, Choi Y, Hwang E, Cho JH, Marks TJ, Hersam MC.

Nano Lett. 2016 Apr 13;16(4):2580-5. doi: 10.1021/acs.nanolett.6b00144. Epub 2016 Mar 9.

PMID:
26950174
20.

WSe2/MoS2 and MoTe2/SnSe2 van der Waals heterostructure transistors with different band alignment.

Li C, Yan X, Song X, Bao W, Ding S, Zhang DW, Zhou P.

Nanotechnology. 2017 Oct 13;28(41):415201. doi: 10.1088/1361-6528/aa810f. Epub 2017 Jul 20.

PMID:
28726689

Supplemental Content

Support Center