Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 189

1.

SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2.

Kim KH, Kim W, Howard TP, Vazquez F, Tsherniak A, Wu JN, Wang W, Haswell JR, Walensky LD, Hahn WC, Orkin SH, Roberts CW.

Nat Med. 2015 Dec;21(12):1491-6. doi: 10.1038/nm.3968. Epub 2015 Nov 9.

2.

PRC2-mediated repression of SMARCA2 predicts EZH2 inhibitor activity in SWI/SNF mutant tumors.

Januario T, Ye X, Bainer R, Alicke B, Smith T, Haley B, Modrusan Z, Gould S, Yauch RL.

Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12249-12254. doi: 10.1073/pnas.1703966114. Epub 2017 Oct 30.

3.

SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells.

Wu S, Fatkhutdinov N, Fukumoto T, Bitler BG, Park PH, Kossenkov AV, Trizzino M, Tang HY, Zhang L, Gardini A, Speicher DW, Zhang R.

Nat Commun. 2018 Oct 8;9(1):4116. doi: 10.1038/s41467-018-06656-6.

4.

Selective Killing of SMARCA2- and SMARCA4-deficient Small Cell Carcinoma of the Ovary, Hypercalcemic Type Cells by Inhibition of EZH2: In Vitro and In Vivo Preclinical Models.

Chan-Penebre E, Armstrong K, Drew A, Grassian AR, Feldman I, Knutson SK, Kuplast-Barr K, Roche M, Campbell J, Ho P, Copeland RA, Chesworth R, Smith JJ, Keilhack H, Ribich SA.

Mol Cancer Ther. 2017 May;16(5):850-860. doi: 10.1158/1535-7163.MCT-16-0678. Epub 2017 Mar 14.

5.

The spectrum of SWI/SNF mutations, ubiquitous in human cancers.

Shain AH, Pollack JR.

PLoS One. 2013;8(1):e55119. doi: 10.1371/journal.pone.0055119. Epub 2013 Jan 23.

6.

Combined inhibition of EZH2 and histone deacetylases as a potential epigenetic therapy for non-small-cell lung cancer cells.

Takashina T, Kinoshita I, Kikuchi J, Shimizu Y, Sakakibara-Konishi J, Oizumi S, Nishimura M, Dosaka-Akita H.

Cancer Sci. 2016 Jul;107(7):955-62. doi: 10.1111/cas.12957. Epub 2016 Jun 13.

7.

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.

McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A 3rd, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL.

Nature. 2012 Dec 6;492(7427):108-12. doi: 10.1038/nature11606. Epub 2012 Oct 10.

PMID:
23051747
8.

Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma.

Kawano S, Grassian AR, Tsuda M, Knutson SK, Warholic NM, Kuznetsov G, Xu S, Xiao Y, Pollock RM, Smith JS, Kuntz KK, Ribich S, Minoshima Y, Matsui J, Copeland RA, Tanaka S, Keilhack H.

PLoS One. 2016 Jul 8;11(7):e0158888. doi: 10.1371/journal.pone.0158888. eCollection 2016. Erratum in: PLoS One. 2017 Jan 13;12 (1):e0170539.

9.

PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease.

Kadoch C, Copeland RA, Keilhack H.

Biochemistry. 2016 Mar 22;55(11):1600-14. doi: 10.1021/acs.biochem.5b01191. Epub 2016 Feb 17. Review.

PMID:
26836503
10.

Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors.

Baker T, Nerle S, Pritchard J, Zhao B, Rivera VM, Garner A, Gonzalvez F.

Oncotarget. 2015 Oct 20;6(32):32646-55. doi: 10.18632/oncotarget.5066.

11.

Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers.

Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih IeM, Conejo-Garcia JR, Speicher DW, Zhang R.

Nat Med. 2015 Mar;21(3):231-8. doi: 10.1038/nm.3799. Epub 2015 Feb 16.

12.

Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation.

Wilson BG, Helming KC, Wang X, Kim Y, Vazquez F, Jagani Z, Hahn WC, Roberts CW.

Mol Cell Biol. 2014 Mar;34(6):1136-44. doi: 10.1128/MCB.01372-13. Epub 2014 Jan 13.

13.

Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer.

Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A, Pollack JR.

Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):E252-9. doi: 10.1073/pnas.1114817109. Epub 2012 Jan 10.

14.

Targeting EZH2 and PRC2 dependence as novel anticancer therapy.

Xu B, Konze KD, Jin J, Wang GG.

Exp Hematol. 2015 Aug;43(8):698-712. doi: 10.1016/j.exphem.2015.05.001. Epub 2015 May 28. Review.

15.

Composition and Function of Mutant Swi/Snf Complexes.

Dutta A, Sardiu M, Gogol M, Gilmore J, Zhang D, Florens L, Abmayr SM, Washburn MP, Workman JL.

Cell Rep. 2017 Feb 28;18(9):2124-2134. doi: 10.1016/j.celrep.2017.01.058.

16.

ARID1A-deficiency in urothelial bladder cancer: No predictive biomarker for EZH2-inhibitor treatment response?

Garczyk S, Schneider U, Lurje I, Becker K, Vögeli TA, Gaisa NT, Knüchel R.

PLoS One. 2018 Aug 23;13(8):e0202965. doi: 10.1371/journal.pone.0202965. eCollection 2018.

17.

Early-Stage Induction of SWI/SNF Mutations during Esophageal Squamous Cell Carcinogenesis.

Nakazato H, Takeshima H, Kishino T, Kubo E, Hattori N, Nakajima T, Yamashita S, Igaki H, Tachimori Y, Kuniyoshi Y, Ushijima T.

PLoS One. 2016 Jan 26;11(1):e0147372. doi: 10.1371/journal.pone.0147372. eCollection 2016.

18.

BAFfling pathologies: Alterations of BAF complexes in cancer.

Arnaud O, Le Loarer F, Tirode F.

Cancer Lett. 2018 Apr 10;419:266-279. doi: 10.1016/j.canlet.2018.01.046. Epub 2018 Jan 31. Review.

PMID:
29374542
19.

Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor.

Honma D, Kanno O, Watanabe J, Kinoshita J, Hirasawa M, Nosaka E, Shiroishi M, Takizawa T, Yasumatsu I, Horiuchi T, Nakao A, Suzuki K, Yamasaki T, Nakajima K, Hayakawa M, Yamazaki T, Yadav AS, Adachi N.

Cancer Sci. 2017 Oct;108(10):2069-2078. doi: 10.1111/cas.13326. Epub 2017 Aug 8.

20.

Selective inhibition of EZH2 by ZLD1039 blocks H3K27 methylation and leads to potent anti-tumor activity in breast cancer.

Song X, Gao T, Wang N, Feng Q, You X, Ye T, Lei Q, Zhu Y, Xiong M, Xia Y, Yang F, Shi Y, Wei Y, Zhang L, Yu L.

Sci Rep. 2016 Feb 12;6:20864. doi: 10.1038/srep20864.

Supplemental Content

Support Center