Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.
2.

Active hexose-correlated compound down-regulates HSP27 of pancreatic cancer cells, and helps the cytotoxic effect of gemcitabine.

Suenaga S, Kuramitsu Y, Kaino S, Maehara S, Maehara Y, Sakaida I, Nakamura K.

Anticancer Res. 2014 Jan;34(1):141-6.

PMID:
24403454
3.

CUB Domain-containing Protein 1 (CDCP1) Is Down-regulated by Active Hexose-correlated Compound in Human Pancreatic Cancer Cells.

Kuhara K, Tokuda K, Kitagawa T, Baron B, Tokunaga M, Harada K, Terasaki M, Uehara O, Ohta T, Takai R, Hamada JI, Kobayashi M, Shimo T, Nagayasu H, Kuramitsu Y.

Anticancer Res. 2018 Nov;38(11):6107-6111. doi: 10.21873/anticanres.12961.

PMID:
30396925
4.

High-mobility Group Box 1 and Mitogen-activated Protein Kinase activated Protein Kinase-2 Are Up-regulated in Gemcitabine-resistant Pancreatic Cancer Cells.

Kuramitsu Y, Wang Y, Kitagawa T, Tokuda K, Akada J, Tokunaga M, Nakamura K.

Anticancer Res. 2015 Jul;35(7):3861-5.

PMID:
26124331
5.

Active hexose-correlated compound down-regulates sex-determining region Y-box 2 of pancreatic cancer cells.

Nawata J, Kuramitsu Y, Wang Y, Kitagawa T, Tokuda K, Baron B, Akada J, Suenaga S, Kaino S, Maehara S, Maehara Y, Sakaida I, Nakamura K.

Anticancer Res. 2014 Sep;34(9):4807-11.

PMID:
25202061
6.

KNK437 downregulates heat shock protein 27 of pancreatic cancer cells and enhances the cytotoxic effect of gemcitabine.

Taba K, Kuramitsu Y, Ryozawa S, Yoshida K, Tanaka T, Mori-Iwamoto S, Maehara S, Maehara Y, Sakaida I, Nakamura K.

Chemotherapy. 2011;57(1):12-6. doi: 10.1159/000321019. Epub 2010 Dec 3.

PMID:
21124027
7.

Heat-shock protein 27 is phosphorylated in gemcitabine-resistant pancreatic cancer cells.

Taba K, Kuramitsu Y, Ryozawa S, Yoshida K, Tanaka T, Maehara S, Maehara Y, Sakaida I, Nakamura K.

Anticancer Res. 2010 Jul;30(7):2539-43.

PMID:
20682980
8.

Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine.

Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Mikuria K, Fujimoto M, Maehara S, Maehara Y, Okita K, Nakamura K, Sakaida I.

Int J Oncol. 2007 Dec;31(6):1345-50.

PMID:
17982661
9.

Enzyme-treated Asparagus Extract Down-regulates Heat Shock Protein 27 of Pancreatic Cancer Cells.

Shimada T, Nanimoto Y, Baron B, Kitagawa T, Tokuda K, Kuramitsu Y.

In Vivo. 2018 Jul-Aug;32(4):759-763. doi: 10.21873/invivo.11305.

10.

Up-regulation of DDX39 in human pancreatic cancer cells with acquired gemcitabine resistance compared to gemcitabine-sensitive parental cells.

Kuramitsu Y, Suenaga S, Wang Y, Tokuda K, Kitagawa T, Tanaka T, Akada J, Maehara S, Maehara Y, Nakamura K.

Anticancer Res. 2013 Aug;33(8):3133-6.

PMID:
23898070
11.

Human pancreatic cancer cells with acquired gemcitabine resistance exhibit significant up-regulation of peroxiredoxin-2 compared to sensitive parental cells.

Suenaga S, Kuramitsu Y, Wang Y, Baron B, Kitagawa T, Akada J, Tokuda K, Kaino S, Maehara S, Maehara Y, Sakaida I, Nakamura K.

Anticancer Res. 2013 Nov;33(11):4821-6.

PMID:
24222118
12.

Ratio of phosphorylated HSP27 to nonphosphorylated HSP27 biphasically acts as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells.

Kang D, Choi HJ, Kang S, Kim SY, Hwang YS, Je S, Han Z, Kim JH, Song JJ.

Cell Signal. 2015 Apr;27(4):807-17. doi: 10.1016/j.cellsig.2015.01.007. Epub 2015 Jan 20.

PMID:
25615626
13.

Interferon-gamma down-regulates heat shock protein 27 of pancreatic cancer cells and helps in the cytotoxic effect of gemcitabine.

Mori-Iwamoto S, Taba K, Kuramitsu Y, Ryozawa S, Tanaka T, Maehara S, Maehara Y, Okita K, Nakamura K, Sakaida I.

Pancreas. 2009 Mar;38(2):224-6. doi: 10.1097/MPA.0b013e3181773970. No abstract available.

PMID:
19238023
14.

The Effects of HSP27 on Gemcitabine-Resistant Pancreatic Cancer Cell Line Through Snail.

Zhang S, Zhang XQ, Huang SL, Chen M, Shen SS, Ding XW, Lv Y, Zou XP.

Pancreas. 2015 Oct;44(7):1121-9. doi: 10.1097/MPA.0000000000000418.

PMID:
26348464
15.

Phosphorylation status of heat shock protein 27 plays a key role in gemcitabine-induced apoptosis of pancreatic cancer cells.

Nakashima M, Adachi S, Yasuda I, Yamauchi T, Kawaguchi J, Itani M, Yoshioka T, Matsushima-Nishiwaki R, Hirose Y, Kozawa O, Moriwaki H.

Cancer Lett. 2011 Dec 27;313(2):218-25. doi: 10.1016/j.canlet.2011.09.008. Epub 2011 Sep 17.

PMID:
21999932
16.

Heat-shock protein 27 plays the key role in gemcitabine-resistance of pancreatic cancer cells.

Kuramitsu Y, Wang Y, Taba K, Suenaga S, Ryozawa S, Kaino S, Sakaida I, Nakamura K.

Anticancer Res. 2012 Jun;32(6):2295-9. Review.

PMID:
22641665
17.

Role of heat shock protein 27 in gemcitabine-resistant human pancreatic cancer: comparative proteomic analyses.

Liu QH, Zhao CY, Zhang J, Chen Y, Gao L, Ni CY, Zhu MH.

Mol Med Rep. 2012 Oct;6(4):767-73. doi: 10.3892/mmr.2012.1013. Epub 2012 Jul 31.

PMID:
22858734
18.

Heat shock transcription factor 1 inhibits H₂O₂-induced cardiomyocyte death through suppression of high-mobility group box 1.

Yu Y, Liu M, Zhang L, Cao Q, Zhang P, Jiang H, Zou Y, Ge J.

Mol Cell Biochem. 2012 May;364(1-2):263-9. doi: 10.1007/s11010-012-1226-x. Epub 2012 Jan 15.

PMID:
22246807
19.

Triptolide cooperates with Cisplatin to induce apoptosis in gemcitabine-resistant pancreatic cancer.

Zhu W, Li J, Wu S, Li S, Le L, Su X, Qiu P, Hu H, Yan G.

Pancreas. 2012 Oct;41(7):1029-38. doi: 10.1097/MPA.0b013e31824abdc0.

PMID:
22617708
20.

The Clinical Significance of Phosphorylated Heat Shock Protein 27 (HSPB1) in Pancreatic Cancer.

Okuno M, Adachi S, Kozawa O, Shimizu M, Yasuda I.

Int J Mol Sci. 2016 Jan 21;17(1). pii: E137. doi: 10.3390/ijms17010137. Review.

Supplemental Content

Support Center