Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.
2.

Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.

Korzeniewski B, Zoladz JA.

J Appl Physiol (1985). 2015 May 15;118(10):1240-9. doi: 10.1152/japplphysiol.00027.2015. Epub 2015 Mar 12.

3.

Regulation of oxidative phosphorylation is different in electrically- and cortically-stimulated skeletal muscle.

Korzeniewski B.

PLoS One. 2018 Apr 26;13(4):e0195620. doi: 10.1371/journal.pone.0195620. eCollection 2018.

4.

Regulation of oxidative phosphorylation during work transitions results from its kinetic properties.

Korzeniewski B.

J Appl Physiol (1985). 2014 Jan 1;116(1):83-94. doi: 10.1152/japplphysiol.00759.2013. Epub 2013 Oct 24.

5.

Regulation of oxidative phosphorylation through each-step activation (ESA): Evidences from computer modeling.

Korzeniewski B.

Prog Biophys Mol Biol. 2017 May;125:1-23. doi: 10.1016/j.pbiomolbio.2016.12.001. Epub 2016 Dec 8. Review.

PMID:
27939921
6.

Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

Korzeniewski B, Zoladz JA.

Biochem J. 2004 May 1;379(Pt 3):703-10.

7.
8.
9.

Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles.

Forbes SC, Paganini AT, Slade JM, Towse TF, Meyer RA.

Am J Physiol Regul Integr Comp Physiol. 2009 Jan;296(1):R161-70. doi: 10.1152/ajpregu.90704.2008. Epub 2008 Oct 22.

10.
11.

Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

Korzeniewski B.

J Appl Physiol (1985). 2016 Aug 1;121(2):424-37. doi: 10.1152/japplphysiol.00358.2016. Epub 2016 Jun 9.

12.

A model of oxidative phosphorylation in mammalian skeletal muscle.

Korzeniewski B, Zoladz JA.

Biophys Chem. 2001 Aug 30;92(1-2):17-34.

PMID:
11527576
13.

Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.

Korzeniewski B, Zoladz JA.

J Appl Physiol (1985). 2013 Sep 1;115(5):605-12. doi: 10.1152/japplphysiol.00469.2013. Epub 2013 Jun 20.

14.

Dissociating external power from intramuscular exercise intensity during intermittent bilateral knee-extension in humans.

Davies MJ, Benson AP, Cannon DT, Marwood S, Kemp GJ, Rossiter HB, Ferguson C.

J Physiol. 2017 Nov 1;595(21):6673-6686. doi: 10.1113/JP274589. Epub 2017 Sep 2.

15.

Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.

Lanza IR, Befroy DE, Kent-Braun JA.

J Appl Physiol (1985). 2005 Nov;99(5):1736-44. Epub 2005 Jul 7.

16.

Effects of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies.

Korzeniewski B.

Biochim Biophys Acta. 2015 Oct;1847(10):1310-9. doi: 10.1016/j.bbabio.2015.07.007. Epub 2015 Jul 17.

17.

Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension.

Cannon DT, Bimson WE, Hampson SA, Bowen TS, Murgatroyd SR, Marwood S, Kemp GJ, Rossiter HB.

J Physiol. 2014 Dec 1;592(23):5287-300. doi: 10.1113/jphysiol.2014.279174. Epub 2014 Oct 3.

18.

Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest.

Korzeniewski B.

PLoS One. 2017 Oct 18;12(10):e0185991. doi: 10.1371/journal.pone.0185991. eCollection 2017.

19.

In vivo ATP synthesis rates in single human muscles during high intensity exercise.

Walter G, Vandenborne K, Elliott M, Leigh JS.

J Physiol. 1999 Sep 15;519 Pt 3:901-10.

20.

Biochemical background of the VO2 on-kinetics in skeletal muscles.

Korzeniewski B, Zoladz JA.

J Physiol Sci. 2006 Feb;56(1):1-12. Review.

PMID:
16779908

Supplemental Content

Support Center