Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy.

Čapek J, Kubásek J, Vojtěch D, Jablonská E, Lipov J, Ruml T.

Mater Sci Eng C Mater Biol Appl. 2016 Jan 1;58:900-8. doi: 10.1016/j.msec.2015.09.049. Epub 2015 Sep 12.

PMID:
26478385
2.

In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.

Drynda A, Hassel T, Bach FW, Peuster M.

J Biomed Mater Res B Appl Biomater. 2015 Apr;103(3):649-60. doi: 10.1002/jbm.b.33234. Epub 2014 Jun 28.

PMID:
24976236
3.

Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents.

Hermawan H, Dubé D, Mantovani D.

J Biomed Mater Res A. 2010 Apr;93(1):1-11. doi: 10.1002/jbm.a.32224.

PMID:
19437432
4.

In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering.

Huang T, Cheng J, Zheng YF.

Mater Sci Eng C Mater Biol Appl. 2014 Feb 1;35:43-53. doi: 10.1016/j.msec.2013.10.023. Epub 2013 Oct 31.

PMID:
24411350
5.

The development of binary Mg-Ca alloys for use as biodegradable materials within bone.

Li Z, Gu X, Lou S, Zheng Y.

Biomaterials. 2008 Apr;29(10):1329-44. doi: 10.1016/j.biomaterials.2007.12.021. Epub 2008 Jan 11.

PMID:
18191191
6.

In vitro corrosion and biocompatibility of binary magnesium alloys.

Gu X, Zheng Y, Cheng Y, Zhong S, Xi T.

Biomaterials. 2009 Feb;30(4):484-98. doi: 10.1016/j.biomaterials.2008.10.021. Epub 2008 Nov 9.

PMID:
19000636
7.

Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

Liu B, Zheng YF.

Acta Biomater. 2011 Mar;7(3):1407-20. doi: 10.1016/j.actbio.2010.11.001. Epub 2010 Nov 4.

PMID:
21056126
8.

Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials.

Wang Y, Tie D, Guan R, Wang N, Shang Y, Cui T, Li J.

J Mech Behav Biomed Mater. 2018 Jan;77:47-57. doi: 10.1016/j.jmbbm.2017.08.028. Epub 2017 Aug 24.

PMID:
28888933
9.

Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.

Zhao C, Pan F, Zhang L, Pan H, Song K, Tang A.

Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 2):1081-1088. doi: 10.1016/j.msec.2016.04.012. Epub 2016 Apr 10.

PMID:
27772708
10.

In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material.

Hong D, Saha P, Chou DT, Lee B, Collins BE, Tan Z, Dong Z, Kumta PN.

Acta Biomater. 2013 Nov;9(10):8534-47. doi: 10.1016/j.actbio.2013.07.001. Epub 2013 Jul 12.

PMID:
23851175
11.

Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material.

Ibrahim H, Klarner AD, Poorganji B, Dean D, Luo AA, Elahinia M.

J Mech Behav Biomed Mater. 2017 May;69:203-212. doi: 10.1016/j.jmbbm.2017.01.005. Epub 2017 Jan 5.

PMID:
28088072
12.

In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal.

Gu XN, Xie XH, Li N, Zheng YF, Qin L.

Acta Biomater. 2012 Jul;8(6):2360-74. doi: 10.1016/j.actbio.2012.02.018. Epub 2012 Mar 2.

PMID:
22387336
13.

Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials.

Tong X, Zhang D, Zhang X, Su Y, Shi Z, Wang K, Lin J, Li Y, Lin J, Wen C.

Acta Biomater. 2018 Dec;82:197-204. doi: 10.1016/j.actbio.2018.10.015. Epub 2018 Oct 11.

PMID:
30316837
14.

Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy.

Lin DJ, Hung FY, Lui TS, Yeh ML.

Mater Sci Eng C Mater Biol Appl. 2015 Jun;51:300-8. doi: 10.1016/j.msec.2015.03.004. Epub 2015 Mar 10.

PMID:
25842139
15.

A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study.

Čapek J, Msallamová Š, Jablonská E, Lipov J, Vojtěch D.

Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:550-562. doi: 10.1016/j.msec.2017.05.100. Epub 2017 May 17.

PMID:
28629053
16.

In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.

Chou DT, Hong D, Saha P, Ferrero J, Lee B, Tan Z, Dong Z, Kumta PN.

Acta Biomater. 2013 Nov;9(10):8518-33. doi: 10.1016/j.actbio.2013.06.025. Epub 2013 Jun 27.

PMID:
23811218
17.

Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.

Zhao C, Pan F, Zhao S, Pan H, Song K, Tang A.

Mater Sci Eng C Mater Biol Appl. 2015 Sep;54:245-51. doi: 10.1016/j.msec.2015.05.042. Epub 2015 May 13.

PMID:
26046288
18.

Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.

Hong D, Chou DT, Velikokhatnyi OI, Roy A, Lee B, Swink I, Issaev I, Kuhn HA, Kumta PN.

Acta Biomater. 2016 Nov;45:375-386. doi: 10.1016/j.actbio.2016.08.032. Epub 2016 Aug 22.

PMID:
27562611
19.

Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure.

Bornapour M, Celikin M, Pekguleryuz M.

Mater Sci Eng C Mater Biol Appl. 2015 Jan;46:16-24. doi: 10.1016/j.msec.2014.10.008. Epub 2014 Oct 8.

PMID:
25491955
20.

Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance.

Bornapour M, Celikin M, Cerruti M, Pekguleryuz M.

Mater Sci Eng C Mater Biol Appl. 2014 Feb 1;35:267-82. doi: 10.1016/j.msec.2013.11.011. Epub 2013 Nov 18.

PMID:
24411378

Supplemental Content

Support Center