Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis.

Matkar S, Sharma P, Gao S, Gurung B, Katona BW, Liao J, Muhammad AB, Kong XC, Wang L, Jin G, Dang CV, Hua X.

Cancer Cell. 2015 Oct 12;28(4):472-485. doi: 10.1016/j.ccell.2015.09.005.

2.

A class I histone deacetylase inhibitor, entinostat, enhances lapatinib efficacy in HER2-overexpressing breast cancer cells through FOXO3-mediated Bim1 expression.

Lee J, Bartholomeusz C, Mansour O, Humphries J, Hortobagyi GN, Ordentlich P, Ueno NT.

Breast Cancer Res Treat. 2014 Jul;146(2):259-72. doi: 10.1007/s10549-014-3014-7. Epub 2014 Jun 12.

3.

PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim.

Park SH, Ito K, Olcott W, Katsyv I, Halstead-Nussloch G, Irie HY.

Breast Cancer Res. 2015 Jun 19;17:86. doi: 10.1186/s13058-015-0594-z.

4.

HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib.

Valabrega G, Capellero S, Cavalloni G, Zaccarello G, Petrelli A, Migliardi G, Milani A, Peraldo-Neia C, Gammaitoni L, Sapino A, Pecchioni C, Moggio A, Giordano S, Aglietta M, Montemurro F.

Breast Cancer Res Treat. 2011 Nov;130(1):29-40. doi: 10.1007/s10549-010-1281-5. Epub 2010 Dec 9.

PMID:
21153051
5.

MEK inhibition increases lapatinib sensitivity via modulation of FOXM1.

Gayle SS, Castellino RC, Buss MC, Nahta R.

Curr Med Chem. 2013;20(19):2486-99.

6.

MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1.

Venturutti L, Cordo Russo RI, Rivas MA, Mercogliano MF, Izzo F, Oakley RH, Pereyra MG, De Martino M, Proietti CJ, Yankilevich P, Roa JC, Guzmán P, Cortese E, Allemand DH, Huang TH, Charreau EH, Cidlowski JA, Schillaci R, Elizalde PV.

Oncogene. 2016 Dec 1;35(48):6189-6202. doi: 10.1038/onc.2016.151. Epub 2016 May 9.

7.

Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti-HER2 therapy.

García-García C, Ibrahim YH, Serra V, Calvo MT, Guzmán M, Grueso J, Aura C, Pérez J, Jessen K, Liu Y, Rommel C, Tabernero J, Baselga J, Scaltriti M.

Clin Cancer Res. 2012 May 1;18(9):2603-12. doi: 10.1158/1078-0432.CCR-11-2750. Epub 2012 Mar 8.

8.

HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2.

Hanker AB, Garrett JT, Estrada MV, Moore PD, Ericsson PG, Koch JP, Langley E, Singh S, Kim PS, Frampton GM, Sanford E, Owens P, Becker J, Groseclose MR, Castellino S, Joensuu H, Huober J, Brase JC, Majjaj S, Brohée S, Venet D, Brown D, Baselga J, Piccart M, Sotiriou C, Arteaga CL.

Clin Cancer Res. 2017 Aug 1;23(15):4323-4334. doi: 10.1158/1078-0432.CCR-16-2287. Epub 2017 Apr 5. Erratum in: Clin Cancer Res. 2019 Feb 15;25(4):1434.

9.

FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer.

Francis RE, Myatt SS, Krol J, Hartman J, Peck B, McGovern UB, Wang J, Guest SK, Filipovic A, Gojis O, Palmieri C, Peston D, Shousha S, Yu Q, Sicinski P, Coombes RC, Lam EW.

Int J Oncol. 2009 Jul;35(1):57-68.

10.

Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib.

Huang W, Wu QD, Zhang M, Kong YL, Cao PR, Zheng W, Xu JH, Ye M.

Cancer Lett. 2015 Jan 28;356(2 Pt B):862-71. doi: 10.1016/j.canlet.2014.10.040. Epub 2014 Nov 4.

PMID:
25449780
11.

PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition.

Brady SW, Zhang J, Tsai MH, Yu D.

Cancer Biol Ther. 2015;16(3):402-11. doi: 10.1080/15384047.2014.1002693.

12.

Pathologic complete response after preoperative anti-HER2 therapy correlates with alterations in PTEN, FOXO, phosphorylated Stat5, and autophagy protein signaling.

Holmes FA, Espina V, Liotta LA, Nagarwala YM, Danso M, McIntyre KJ, Osborne CR, Anderson T, Krekow L, Blum JL, Pippen J, Florance A, Mahoney J, O'Shaughnessy JA.

BMC Res Notes. 2013 Dec 5;6:507. doi: 10.1186/1756-0500-6-507.

13.

ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells.

Li D, Marchenko ND.

Oncotarget. 2017 Jan 24;8(4):5823-5833. doi: 10.18632/oncotarget.12878.

14.
15.

Bruton's Tyrosine Kinase Inhibitors Prevent Therapeutic Escape in Breast Cancer Cells.

Wang X, Wong J, Sevinsky CJ, Kokabee L, Khan F, Sun Y, Conklin DS.

Mol Cancer Ther. 2016 Sep;15(9):2198-208. doi: 10.1158/1535-7163.MCT-15-0813. Epub 2016 Jun 2.

16.

A preclinical evaluation of the PI3K alpha/delta dominant inhibitor BAY 80-6946 in HER2-positive breast cancer models with acquired resistance to the HER2-targeted therapies trastuzumab and lapatinib.

Elster N, Cremona M, Morgan C, Toomey S, Carr A, O'Grady A, Hennessy BT, Eustace AJ.

Breast Cancer Res Treat. 2015 Jan;149(2):373-83. doi: 10.1007/s10549-014-3239-5. Epub 2014 Dec 21.

PMID:
25528022
17.

An heregulin-EGFR-HER3 autocrine signaling axis can mediate acquired lapatinib resistance in HER2+ breast cancer models.

Xia W, Petricoin EF 3rd, Zhao S, Liu L, Osada T, Cheng Q, Wulfkuhle JD, Gwin WR, Yang X, Gallagher RI, Bacus S, Lyerly HK, Spector NL.

Breast Cancer Res. 2013;15(5):R85.

18.

Resistance to everolimus driven by epigenetic regulation of MYC in ER+ breast cancers.

Bihani T, Ezell SA, Ladd B, Grosskurth SE, Mazzola AM, Pietras M, Reimer C, Zinda M, Fawell S, D'Cruz CM.

Oncotarget. 2015 Feb 10;6(4):2407-20.

19.

Epidermal growth factor-receptor activation modulates Src-dependent resistance to lapatinib in breast cancer models.

Formisano L, Nappi L, Rosa R, Marciano R, D'Amato C, D'Amato V, Damiano V, Raimondo L, Iommelli F, Scorziello A, Troncone G, Veneziani B, Parsons SJ, De Placido S, Bianco R.

Breast Cancer Res. 2014 May 5;16(3):R45. doi: 10.1186/bcr3650.

20.

Synergism from combined immunologic and pharmacologic inhibition of HER2 in vivo.

Morse MA, Wei J, Hartman Z, Xia W, Ren XR, Lei G, Barry WT, Osada T, Hobeika AC, Peplinski S, Jiang H, Devi GR, Chen W, Spector N, Amalfitano A, Lyerly HK, Clay TM.

Int J Cancer. 2010 Jun 15;126(12):2893-903. doi: 10.1002/ijc.24995.

Supplemental Content

Support Center