Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility.

Kieser KJ, Baranowski C, Chao MC, Long JE, Sassetti CM, Waldor MK, Sacchettini JC, Ioerger TR, Rubin EJ.

Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):13087-92. doi: 10.1073/pnas.1514135112. Epub 2015 Oct 5.

2.

Involvement of efflux pumps in the resistance to peptidoglycan synthesis inhibitors in Mycobacterium tuberculosis.

Dinesh N, Sharma S, Balganesh M.

Antimicrob Agents Chemother. 2013 Apr;57(4):1941-3. doi: 10.1128/AAC.01957-12. Epub 2013 Jan 18.

3.

Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis.

Botella H, Yang G, Ouerfelli O, Ehrt S, Nathan CF, Vaubourgeix J.

MBio. 2017 Sep 12;8(5). pii: e01183-17. doi: 10.1128/mBio.01183-17.

4.

Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria.

Kieser KJ, Boutte CC, Kester JC, Baer CE, Barczak AK, Meniche X, Chao MC, Rego EH, Sassetti CM, Fortune SM, Rubin EJ.

PLoS Pathog. 2015 Jun 26;11(6):e1005010. doi: 10.1371/journal.ppat.1005010. eCollection 2015 Jun.

5.

Dissecting How Mtb Makes Its Wall, Buffering Endosomal pH, and Discovery of Ribocil.

[No authors listed]

Chem Biol. 2015 Nov 19;22(11):1415-1416. doi: 10.1016/j.chembiol.2015.11.003.

6.

Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development.

Moraes GL, Gomes GC, Monteiro de Sousa PR, Alves CN, Govender T, Kruger HG, Maguire GE, Lamichhane G, Lameira J.

Tuberculosis (Edinb). 2015 Mar;95(2):95-111. doi: 10.1016/j.tube.2015.01.006. Epub 2015 Jan 29. Review.

7.
8.

Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets.

Vashisht R, Bhat AG, Kushwaha S, Bhardwaj A; OSDD Consortium, Brahmachari SK.

J Transl Med. 2014 Oct 11;12:263. doi: 10.1186/s12967-014-0263-5.

9.

Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis.

de Steenwinkel JE, de Knegt GJ, ten Kate MT, van Belkum A, Verbrugh HA, Kremer K, van Soolingen D, Bakker-Woudenberg IA.

J Antimicrob Chemother. 2010 Dec;65(12):2582-9. doi: 10.1093/jac/dkq374. Epub 2010 Oct 14.

PMID:
20947621
10.

Targeting the formation of the cell wall core of M. tuberculosis.

Barry CE, Crick DC, McNeil MR.

Infect Disord Drug Targets. 2007 Jun;7(2):182-202. Review.

11.

Lcp1 Is a Phosphotransferase Responsible for Ligating Arabinogalactan to Peptidoglycan in Mycobacterium tuberculosis.

Harrison J, Lloyd G, Joe M, Lowary TL, Reynolds E, Walters-Morgan H, Bhatt A, Lovering A, Besra GS, Alderwick LJ.

MBio. 2016 Aug 2;7(4). pii: e00972-16. doi: 10.1128/mBio.00972-16.

12.

A New Screen for Tuberculosis Drug Candidates Utilizing a Luciferase-Expressing Recombinant Mycobacterium bovis Bacillus Calmette-Guéren.

Ozeki Y, Igarashi M, Doe M, Tamaru A, Kinoshita N, Ogura Y, Iwamoto T, Sawa R, Umekita M, Enany S, Nishiuchi Y, Osada-Oka M, Hayashi T, Niki M, Tateishi Y, Hatano M, Matsumoto S.

PLoS One. 2015 Nov 16;10(11):e0141658. doi: 10.1371/journal.pone.0141658. eCollection 2015.

13.

Strain differentiation of Mycobacterium tuberculosis complex isolated from sputum of pulmonary tuberculosis patients.

Abbadi S, El Hadidy G, Gomaa N, Cooksey R.

Int J Infect Dis. 2009 Mar;13(2):236-42. doi: 10.1016/j.ijid.2008.06.020. Epub 2008 Oct 5.

14.

[A study on the drug resistance to p-nitrobenzoic acid in Mycobacterium tuberculosis].

Wu LZ, Pan MY, Liu X, Zhou HM, Wu XY, Luo CM.

Zhonghua Jie He He Hu Xi Za Zhi. 2011 Feb;34(2):117-9. Chinese.

PMID:
21426730
15.

Synthetic calanolides with bactericidal activity against replicating and nonreplicating Mycobacterium tuberculosis.

Zheng P, Somersan-Karakaya S, Lu S, Roberts J, Pingle M, Warrier T, Little D, Guo X, Brickner SJ, Nathan CF, Gold B, Liu G.

J Med Chem. 2014 May 8;57(9):3755-72. doi: 10.1021/jm4019228. Epub 2014 Apr 24.

PMID:
24694175
16.

Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis.

Nandakumar M, Nathan C, Rhee KY.

Nat Commun. 2014 Jun 30;5:4306. doi: 10.1038/ncomms5306.

PMID:
24978671
17.

The hydrolase LpqI primes mycobacterial peptidoglycan recycling.

Moynihan PJ, Cadby IT, Veerapen N, Jankute M, Crosatti M, Mukamolova GV, Lovering AL, Besra GS.

Nat Commun. 2019 Jun 14;10(1):2647. doi: 10.1038/s41467-019-10586-2.

18.

Depletion of resuscitation-promoting factors has limited impact on the drug susceptibility of Mycobacterium tuberculosis.

Kana BD, Mizrahi V, Gordhan BG.

J Antimicrob Chemother. 2010 Aug;65(8):1583-5. doi: 10.1093/jac/dkq199. Epub 2010 Jun 11.

PMID:
20542905
19.

Rapid speciation of 15 clinically relevant mycobacteria with simultaneous detection of resistance to rifampin, isoniazid, and streptomycin in Mycobacterium tuberculosis complex.

Shenai S, Rodrigues C, Mehta A.

Int J Infect Dis. 2009 Jan;13(1):46-58. doi: 10.1016/j.ijid.2008.03.025. Epub 2008 Jun 18.

20.

Mycobacterium tuberculosis CwsA interacts with CrgA and Wag31, and the CrgA-CwsA complex is involved in peptidoglycan synthesis and cell shape determination.

Plocinski P, Arora N, Sarva K, Blaszczyk E, Qin H, Das N, Plocinska R, Ziolkiewicz M, Dziadek J, Kiran M, Gorla P, Cross TA, Madiraju M, Rajagopalan M.

J Bacteriol. 2012 Dec;194(23):6398-409. doi: 10.1128/JB.01005-12. Epub 2012 Sep 21.

Supplemental Content

Support Center