Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

A Chlamydia trachomatis strain with a chemically generated amino acid substitution (P370L) in the cthtrA gene shows reduced elementary body production.

Marsh JW, Wee BA, Tyndall JD, Lott WB, Bastidas RJ, Caldwell HD, Valdivia RH, Kari L, Huston WM.

BMC Microbiol. 2015 Sep 30;15:194. doi: 10.1186/s12866-015-0533-2.

2.

the active site residue V266 of Chlamydial HtrA is critical for substrate binding during both in vitro and in vivo conditions.

Gloeckl S, Tyndall JD, Stansfield SH, Timms P, Huston WM.

J Mol Microbiol Biotechnol. 2012;22(1):10-6. doi: 10.1159/000336312. Epub 2012 Feb 21.

PMID:
22353774
3.

The protease inhibitor JO146 demonstrates a critical role for CtHtrA for Chlamydia trachomatis reversion from penicillin persistence.

Ong VA, Marsh JW, Lawrence A, Allan JA, Timms P, Huston WM.

Front Cell Infect Microbiol. 2013 Dec 18;3:100. doi: 10.3389/fcimb.2013.00100. eCollection 2013.

4.

Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis.

Gloeckl S, Ong VA, Patel P, Tyndall JD, Timms P, Beagley KW, Allan JA, Armitage CW, Turnbull L, Whitchurch CB, Merdanovic M, Ehrmann M, Powers JC, Oleksyszyn J, Verdoes M, Bogyo M, Huston WM.

Mol Microbiol. 2013 Aug;89(4):676-89. doi: 10.1111/mmi.12306. Epub 2013 Jul 12.

5.

CtHtrA: the lynchpin of the chlamydial surface and a promising therapeutic target.

Marsh JW, Ong VA, Lott WB, Timms P, Tyndall JD, Huston WM.

Future Microbiol. 2017 Jul;12:817-829. doi: 10.2217/fmb-2017-0017. Epub 2017 Jun 8. Review.

PMID:
28593794
6.

Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches.

Snavely EA, Kokes M, Dunn JD, Saka HA, Nguyen BD, Bastidas RJ, McCafferty DG, Valdivia RH.

Pathog Dis. 2014 Aug;71(3):336-51. doi: 10.1111/2049-632X.12179. Epub 2014 May 16.

7.

Proteolytic activation of Chlamydia trachomatis HTRA is mediated by PDZ1 domain interactions with protease domain loops L3 and LC and beta strand ╬▓5.

Marsh JW, Lott WB, Tyndall JD, Huston WW.

Cell Mol Biol Lett. 2013 Dec;18(4):522-37. doi: 10.2478/s11658-013-0103-2. Epub 2013 Sep 13.

8.
9.

Structural basis of the proteolytic and chaperone activity of Chlamydia trachomatis CT441.

Kohlmann F, Shima K, Hilgenfeld R, Solbach W, Rupp J, Hansen G.

J Bacteriol. 2015 Jan 1;197(1):211-8. doi: 10.1128/JB.02140-14. Epub 2014 Oct 27.

10.

A novel protease inhibitor causes inclusion vacuole reduction and disrupts the intracellular growth of Chlamydia trachomatis.

Zhou Y, Lu X, Huang D, Lu Y, Zhang H, Zhang L, Yu P, Wang F, Wang Y.

Biochem Biophys Res Commun. 2019 Aug 13;516(1):157-162. doi: 10.1016/j.bbrc.2019.05.184. Epub 2019 Jun 13.

PMID:
31202460
11.

In vitro susceptibility of recent Chlamydia trachomatis clinical isolates to the CtHtrA inhibitor JO146.

Ong VA, Lawrence A, Timms P, Vodstrcil LA, Tabrizi SN, Beagley KW, Allan JA, Hocking JS, Huston WM.

Microbes Infect. 2015 Nov-Dec;17(11-12):738-44. doi: 10.1016/j.micinf.2015.09.004. Epub 2015 Sep 11.

PMID:
26369711
12.

Unique residues involved in activation of the multitasking protease/chaperone HtrA from Chlamydia trachomatis.

Huston WM, Tyndall JD, Lott WB, Stansfield SH, Timms P.

PLoS One. 2011;6(9):e24547. doi: 10.1371/journal.pone.0024547. Epub 2011 Sep 8.

13.

Initial Characterization of the Two ClpP Paralogs of Chlamydia trachomatis Suggests Unique Functionality for Each.

Wood NA, Chung KY, Blocker AM, Rodrigues de Almeida N, Conda-Sheridan M, Fisher DJ, Ouellette SP.

J Bacteriol. 2018 Dec 20;201(2). pii: e00635-18. doi: 10.1128/JB.00635-18. Print 2019 Jan 15.

14.

The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling.

Chen YS, Bastidas RJ, Saka HA, Carpenter VK, Richards KL, Plano GV, Valdivia RH.

PLoS Pathog. 2014 Feb 20;10(2):e1003954. doi: 10.1371/journal.ppat.1003954. eCollection 2014 Feb. Erratum in: PLoS Pathog. 2014 Mar;10(3):e1004094.

15.

Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells.

Chen D, Lei L, Flores R, Huang Z, Wu Z, Chai J, Zhong G.

Microb Pathog. 2010 Oct;49(4):164-73. doi: 10.1016/j.micpath.2010.05.008. Epub 2010 May 25.

16.

Evidence of a conserved role for Chlamydia HtrA in the replication phase of the chlamydial developmental cycle.

Patel P, De Boer L, Timms P, Huston WM.

Microbes Infect. 2014 Aug;16(8):690-4. doi: 10.1016/j.micinf.2014.07.003. Epub 2014 Jul 25.

PMID:
25066238
17.

Conserved type III secretion system exerts important roles in Chlamydia trachomatis.

Dai W, Li Z.

Int J Clin Exp Pathol. 2014 Aug 15;7(9):5404-14. eCollection 2014. Review.

18.

Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L(2)) and D lineages.

Somboonna N, Wan R, Ojcius DM, Pettengill MA, Joseph SJ, Chang A, Hsu R, Read TD, Dean D.

MBio. 2011 May 3;2(3):e00045-11. doi: 10.1128/mBio.00045-11. Print 2011.

19.

Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum.

O'Connell CM, AbdelRahman YM, Green E, Darville HK, Saira K, Smith B, Darville T, Scurlock AM, Meyer CR, Belland RJ.

Infect Immun. 2011 Mar;79(3):1044-56. doi: 10.1128/IAI.01118-10. Epub 2011 Jan 3.

20.

The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 degrees C.

Huston WM, Swedberg JE, Harris JM, Walsh TP, Mathews SA, Timms P.

FEBS Lett. 2007 Jul 24;581(18):3382-6. Epub 2007 Jun 26.

Supplemental Content

Support Center