Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

Copper status of exposed microorganisms influences susceptibility to metallic nanoparticles.

Reyes VC, Spitzmiller MR, Hong-Hermesdorf A, Kropat J, Damoiseaux RD, Merchant SS, Mahendra S.

Environ Toxicol Chem. 2016 May;35(5):1148-58. doi: 10.1002/etc.3254. Epub 2016 Mar 9.

2.

Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.

Cheloni G, Marti E, Slaveykova VI.

Aquat Toxicol. 2016 Jan;170:120-128. doi: 10.1016/j.aquatox.2015.11.018. Epub 2015 Nov 23.

PMID:
26655656
3.

Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii.

Melegari SP, Perreault F, Costa RH, Popovic R, Matias WG.

Aquat Toxicol. 2013 Oct 15;142-143:431-40. doi: 10.1016/j.aquatox.2013.09.015. Epub 2013 Sep 23.

PMID:
24113166
4.

Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.

Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R.

Chemosphere. 2012 Jun;87(11):1388-94. doi: 10.1016/j.chemosphere.2012.02.046. Epub 2012 Mar 23.

PMID:
22445953
5.

Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation.

Shaw BJ, Al-Bairuty G, Handy RD.

Aquat Toxicol. 2012 Jul 15;116-117:90-101. doi: 10.1016/j.aquatox.2012.02.032. Epub 2012 Mar 5.

PMID:
22480992
6.

Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.

Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R.

Aquat Toxicol. 2010 Jan 31;96(2):109-14. doi: 10.1016/j.aquatox.2009.10.002. Epub 2009 Oct 12.

PMID:
19883948
7.

Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles.

Reyes VC, Opot SO, Mahendra S.

Environ Toxicol Chem. 2015 Apr;34(4):887-97. doi: 10.1002/etc.2867. Epub 2015 Mar 2.

PMID:
25556815
8.

CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.

Wang Y, Cheng ZZ, Chen X, Zheng Q, Yang ZM.

Plant Sci. 2015 Nov;240:120-9. doi: 10.1016/j.plantsci.2015.09.004. Epub 2015 Sep 8.

PMID:
26475193
9.

Copper-based nanoparticles induce high toxicity in leukemic HL60 cells.

Rodhe Y, Skoglund S, Odnevall Wallinder I, Potácová Z, Möller L.

Toxicol In Vitro. 2015 Oct;29(7):1711-9. doi: 10.1016/j.tiv.2015.05.020. Epub 2015 May 28.

PMID:
26028147
10.

Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats.

Lee IC, Ko JW, Park SH, Lim JO, Shin IS, Moon C, Kim SH, Heo JD, Kim JC.

Int J Nanomedicine. 2016 Jun 16;11:2883-900. doi: 10.2147/IJN.S106346. eCollection 2016.

11.

Alleviation of copper-induced oxidative damage in Chlamydomonas reinhardtii by carbon monoxide.

Zheng Q, Meng Q, Wei YY, Yang ZM.

Arch Environ Contam Toxicol. 2011 Aug;61(2):220-7. doi: 10.1007/s00244-010-9602-6. Epub 2010 Sep 22.

PMID:
20859622
12.

Elemental copper nanoparticle toxicity to anaerobic ammonium oxidation and the influence of ethylene diamine-tetra acetic acid (EDTA) on copper toxicity.

Gonzalez-Estrella J, Li G, Neely SE, Puyol D, Sierra-Alvarez R, Field JA.

Chemosphere. 2017 Oct;184:730-737. doi: 10.1016/j.chemosphere.2017.06.054. Epub 2017 Jun 14.

PMID:
28641224
13.

Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.

Wu F, Bortvedt A, Harper BJ, Crandon LE, Harper SL.

Aquat Toxicol. 2017 Sep;190:78-86. doi: 10.1016/j.aquatox.2017.06.021. Epub 2017 Jun 26.

PMID:
28697458
14.

Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.

Xie M, Sun Y, Feng J, Gao Y, Zhu L.

Aquat Toxicol. 2019 May;210:106-116. doi: 10.1016/j.aquatox.2019.02.018. Epub 2019 Feb 27.

PMID:
30844631
15.

Mechanism of long-term toxicity of CuO NPs to microalgae.

Che X, Ding R, Li Y, Zhang Z, Gao H, Wang W.

Nanotoxicology. 2018 Oct;12(8):923-939. doi: 10.1080/17435390.2018.1498928. Epub 2018 Sep 5.

PMID:
30182775
16.

Effects of copper oxide nanoparticles and copper ions to zebrafish (Danio rerio) cells, embryos and fry.

Thit A, Skjolding LM, Selck H, Sturve J.

Toxicol In Vitro. 2017 Dec;45(Pt 1):89-100. doi: 10.1016/j.tiv.2017.08.010. Epub 2017 Aug 15.

PMID:
28818407
17.

Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.

Regier N, Cosio C, von Moos N, Slaveykova VI.

Chemosphere. 2015 Jun;128:56-61. doi: 10.1016/j.chemosphere.2014.12.078. Epub 2015 Feb 2.

PMID:
25655819
18.

Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles.

Lee IC, Ko JW, Park SH, Shin NR, Shin IS, Moon C, Kim JH, Kim HC, Kim JC.

Part Fibre Toxicol. 2016 Oct 28;13(1):56.

19.

Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos.

Hua J, Vijver MG, Ahmad F, Richardson MK, Peijnenburg WJ.

Environ Toxicol Chem. 2014 Aug;33(8):1774-82. doi: 10.1002/etc.2615. Epub 2014 Jun 20.

PMID:
24839162
20.

Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells.

Katsumiti A, Thorley AJ, Arostegui I, Reip P, Valsami-Jones E, Tetley TD, Cajaraville MP.

Toxicol In Vitro. 2018 Apr;48:146-158. doi: 10.1016/j.tiv.2018.01.013.

Supplemental Content

Support Center