Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 56

1.

In vivo behavior of hydroxyapatite/β-TCP/collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days.

Maté Sánchez de Val JE, Calvo Guirado JL, Ramírez Fernández MP, Delgado Ruiz RA, Mazón P, De Aza PN.

Clin Oral Implants Res. 2015 Aug 7. doi: 10.1111/clr.12656. [Epub ahead of print]

PMID:
26249361
2.

Comparison of three hydroxyapatite/β-tricalcium phosphate/collagen ceramic scaffolds: an in vivo study.

Maté-Sánchez de Val JE, Mazón P, Guirado JLC, Ruiz RA, Ramírez Fernández MP, Negri B, Abboud M, De Aza PN.

J Biomed Mater Res A. 2014 Apr;102(4):1037-46. doi: 10.1002/jbm.a.34785. Epub 2013 Jun 4.

PMID:
23649980
4.

The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.

Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, Sader R, Unger RE, Ziegler G, Kirkpatrick CJ.

Biomed Mater. 2012 Feb;7(1):015005. doi: 10.1088/1748-6041/7/1/015005. Epub 2012 Jan 27.

PMID:
22287541
5.

The primacy of octacalcium phosphate collagen composites in bone regeneration.

Kamakura S, Sasaki K, Homma T, Honda Y, Anada T, Echigo S, Suzuki O.

J Biomed Mater Res A. 2007 Dec 1;83(3):725-33.

PMID:
17559110
6.

Fabrication and characterization of novel nano hydroxyapatite/β-tricalcium phosphate scaffolds in three different composition ratios.

Ebrahimi M, Pripatnanont P, Monmaturapoj N, Suttapreyasri S.

J Biomed Mater Res A. 2012 Sep;100(9):2260-8. doi: 10.1002/jbm.a.34160. Epub 2012 Apr 12.

PMID:
22499354
7.

Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.

Patlolla A, Collins G, Arinzeh TL.

Acta Biomater. 2010 Jan;6(1):90-101. doi: 10.1016/j.actbio.2009.07.028. Epub 2009 Jul 23.

PMID:
19631769
8.

Comparative performance of three ceramic bone graft substitutes.

Hing KA, Wilson LF, Buckland T.

Spine J. 2007 Jul-Aug;7(4):475-90. Epub 2007 Jan 24.

PMID:
17630146
9.

Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold.

Hao W, Hu YY, Wei YY, Pang L, Lv R, Bai JP, Xiong Z, Jiang M.

Cells Tissues Organs. 2008;187(2):89-102. Epub 2007 Oct 15.

PMID:
17938566
10.

Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.

França R, Samani TD, Bayade G, Yahia L, Sacher E.

J Colloid Interface Sci. 2014 Apr 15;420:182-8. doi: 10.1016/j.jcis.2013.12.055. Epub 2014 Jan 16.

PMID:
24559717
11.

Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.

Haberstroh K, Ritter K, Kuschnierz J, Bormann KH, Kaps C, Carvalho C, Mülhaupt R, Sittinger M, Gellrich NC.

J Biomed Mater Res B Appl Biomater. 2010 May;93(2):520-30. doi: 10.1002/jbm.b.31611.

PMID:
20225216
12.

Comparison of TCP and TCP/HA Hybrid Scaffolds for Osteoconductive Activity.

Wongwitwichot P, Kaewsrichan J, Chua KH, Ruszymah BH.

Open Biomed Eng J. 2010;4:279-85. doi: 10.2174/1874120701004010279. Epub 2010 Dec 30.

13.

Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold.

Arahira T, Todo M.

J Mech Behav Biomed Mater. 2014 Nov;39:218-30. doi: 10.1016/j.jmbbm.2014.07.013. Epub 2014 Jul 23.

PMID:
25146676
14.
15.

[Experimental study on repairing rabbit femoral condyles defect by small intestinal submucosa and HA-TCP compositions at different ratios].

Ma X, Zhang C, Zhang K.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006 Nov;20(11):1061-5. Chinese.

PMID:
17191567
16.
17.

Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: biomechanical results.

Mayr HO, Klehm J, Schwan S, Hube R, Südkamp NP, Niemeyer P, Salzmann G, von Eisenhardt-Rothe R, Heilmann A, Bohner M, Bernstein A.

Acta Biomater. 2013 Jan;9(1):4845-55. doi: 10.1016/j.actbio.2012.07.040. Epub 2012 Aug 9.

PMID:
22885682
18.

Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results.

Bernstein A, Niemeyer P, Salzmann G, Südkamp NP, Hube R, Klehm J, Menzel M, von Eisenhart-Rothe R, Bohner M, Görz L, Mayr HO.

Acta Biomater. 2013 Jul;9(7):7490-505. doi: 10.1016/j.actbio.2013.03.021. Epub 2013 Mar 23.

PMID:
23528497
19.

The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells.

Zheng L, Yang F, Shen H, Hu X, Mochizuki C, Sato M, Wang S, Zhang Y.

Biomaterials. 2011 Oct;32(29):7053-9. doi: 10.1016/j.biomaterials.2011.06.004. Epub 2011 Jun 30.

PMID:
21722953
20.

Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds.

Morales-Hernandez DG, Genetos DC, Working DM, Murphy KC, Leach JK.

J Funct Biomater. 2012 May 23;3(2):382-97. doi: 10.3390/jfb3020382.

Supplemental Content

Support Center