Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

A Nondestructive Method to Distinguish the Internal Constituent Architecture of the Intervertebral Discs Using 9.4 Tesla Magnetic Resonance Imaging.

Wijayathunga VN, Ridgway JP, Ingham E, Treanor D, Carey D, Bulpitt A, Magee D, Damion R, Wilcox RK.

Spine (Phila Pa 1976). 2015 Dec;40(24):E1315-22. doi: 10.1097/BRS.0000000000001075.

2.

An In Vitro Study of the Intervertebral Disc Structure Using 3 T Magnetic Resonance Imaging.

Wijayathunga VN, Tanner SF, Ridgway JP, Wilcox RK.

Spine (Phila Pa 1976). 2019 Jun 1;44(11):793-800. doi: 10.1097/BRS.0000000000002958.

3.

Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results.

Gebhard H, Bowles R, Dyke J, Saleh T, Doty S, Bonassar L, Härtl R.

Evid Based Spine Care J. 2010 Aug;1(2):62-6. doi: 10.1055/s-0028-1100918.

4.

Three-dimensional microstructural reconstruction of the ovine intervertebral disc using ultrahigh field MRI.

Sharabi M, Wade KR, Galbusera F, Rasche V, Haj-Ali R, Wilke HJ.

Spine J. 2018 Nov;18(11):2119-2127. doi: 10.1016/j.spinee.2018.06.356. Epub 2018 Jun 30.

PMID:
29969731
5.

Magnetic resonance imaging of the pancreas at 3.0 tesla: qualitative and quantitative comparison with 1.5 tesla.

Edelman RR, Salanitri G, Brand R, Dunkle E, Ragin A, Li W, Mehta U, Berlin J, Newmark G, Gore R, Patel B, Carillo A, Vu A.

Invest Radiol. 2006 Feb;41(2):175-80.

PMID:
16428989
6.

[Comparison between pig lumbar zypapophyseal joint cartilage acquired from multiple magnetic resonance image sequences and gross specimens].

Liao H, Yu W, Wang W, Liao Y.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010 Oct;35(10):1064-72. doi: 10.3969/j.issn.1672-7347.2010.10.006. Chinese.

7.

Alterations in T2 relaxation magnetic resonance imaging of the ovine intervertebral disc due to nonenzymatic glycation.

Jazini E, Sharan AD, Morse LJ, Dyke JP, Aronowitz EB, Chen LK, Tang SY.

Spine (Phila Pa 1976). 2012 Feb 15;37(4):E209-15. doi: 10.1097/BRS.0b013e31822ce81f.

8.

Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging.

Moon SM, Yoder JH, Wright AC, Smith LJ, Vresilovic EJ, Elliott DM.

Eur Spine J. 2013 Aug;22(8):1820-8. doi: 10.1007/s00586-013-2798-1. Epub 2013 May 15.

9.

Magnetic resonance imaging of hyaline cartilage defects at 1.5T and 3.0T: comparison of medium T2-weighted fast spin echo, T1-weighted two-dimensional and three-dimensional gradient echo pulse sequences.

Fischbach F, Bruhn H, Unterhauser F, Ricke J, Wieners G, Felix R, Weiler A, Schröder RJ.

Acta Radiol. 2005 Feb;46(1):67-73. Erratum in: Acta Radiol. 2005 Apr;46(2):218.

PMID:
15841742
10.

IDEAL 3D spoiled gradient echo of the articular cartilage of the knee on 3.0 T MRI: a comparison with conventional 3.0 T fast spin-echo T2 fat saturation image.

Han CH, Park HJ, Lee SY, Chung EC, Choi SH, Yun JS, Rho MH.

Acta Radiol. 2015 Dec;56(12):1479-86. doi: 10.1177/0284185114556097. Epub 2014 Oct 27.

PMID:
25348476
11.

[Comparison of three-dimensional gradient echo, turbo spin echo and steady-state gradient echo sequences in axial MRI examination of the cervical spine].

Mahmutyazicioğlu K, Ozdemir H, Savranlar A, Ozer T, Erdem O, Erdem Z, Gündoğdu S.

Tani Girisim Radyol. 2003 Dec;9(4):432-8. Turkish.

12.

Three-dimensional morphological and signal intensity features for detection of intervertebral disc degeneration from magnetic resonance images.

Neubert A, Fripp J, Engstrom C, Walker D, Weber MA, Schwarz R, Crozier S.

J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1082-90. doi: 10.1136/amiajnl-2012-001547. Epub 2013 Jun 27.

13.

MR imaging of the inner ear and cerebellopontine angle: comparison of three-dimensional and two-dimensional sequences.

Czerny C, Rand T, Gstoettner W, Woelfl G, Imhof H, Trattnig S.

AJR Am J Roentgenol. 1998 Mar;170(3):791-6.

PMID:
9490977
14.

Clinical utility of optimized three-dimensional T1-, T2-, and T2*-weighted sequences in spinal magnetic resonance imaging.

Tanitame N, Tanitame K, Awai K.

Jpn J Radiol. 2017 Apr;35(4):135-144. doi: 10.1007/s11604-017-0621-3. Epub 2017 Feb 23. Review.

PMID:
28233194
15.

T2* mapping of ovine intervertebral discs: Normative data for cervical and lumbar spine.

Kolf AK, Hesper T, Schleich C, Hosalkar HS, Jankowiak S, Cacchi C, Antoch G, Zilkens C, Krauspe R, Bittersohl B.

J Orthop Res. 2016 Apr;34(4):717-24. doi: 10.1002/jor.23071. Epub 2015 Oct 26.

16.

Ultrashort echo time and zero echo time MRI at 7T.

Larson PE, Han M, Krug R, Jakary A, Nelson SJ, Vigneron DB, Henry RG, McKinnon G, Kelley DA.

MAGMA. 2016 Jun;29(3):359-70. doi: 10.1007/s10334-015-0509-0. Epub 2015 Dec 24.

17.

Theory of MRI contrast in the annulus fibrosus of the intervertebral disc.

Wright AC, Yoder JH, Vresilovic EJ, Elliott DM.

MAGMA. 2016 Aug;29(4):711-22. doi: 10.1007/s10334-015-0522-3. Epub 2016 Jan 11.

18.

Choice of the pulse sequence and parameters for improved signal-to-noise ratio in T1-weighted study of MRI.

Amin N, Afzal M, Yousaf M, Javid MA.

J Pak Med Assoc. 2015 May;65(5):512-8.

PMID:
26028386
19.

Fast multiplanar spoiled gradient-recalled imaging of the liver: pulse sequence optimization and comparison with spin-echo MR imaging.

Low RN, Francis IR, Herfkens RJ, Jeffrey RB Jr, Glazer GM, Foo TK, Shimakawa A, Pelc NJ.

AJR Am J Roentgenol. 1993 Mar;160(3):501-9.

PMID:
8381572
20.

T2-prepared segmented 3D-gradient-echo for fast T2-weighted high-resolution three-dimensional imaging of the carotid artery wall at 3T: a feasibility study.

Zhu J, Bornstedt A, Merkle N, Liu N, Rottbauer W, Ma G, Rasche V.

Biomed Eng Online. 2016 Dec 28;15(Suppl 2):165. doi: 10.1186/s12938-016-0276-9.

Supplemental Content

Support Center