Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 170

1.

PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants.

Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B, Westwood JH, Shirasu K, Bond CS, Dyer KA, Nelson DC.

Science. 2015 Jul 31;349(6247):540-3. doi: 10.1126/science.aab1140.

2.

Structural modelling and transcriptional responses highlight a clade of PpKAI2-LIKE genes as candidate receptors for strigolactones in Physcomitrella patens.

Lopez-Obando M, Conn CE, Hoffmann B, Bythell-Douglas R, Nelson DC, Rameau C, Bonhomme S.

Planta. 2016 Jun;243(6):1441-53. doi: 10.1007/s00425-016-2481-y. Epub 2016 Mar 15.

PMID:
26979323
3.

Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues.

Bythell-Douglas R, Rothfels CJ, Stevenson DWD, Graham SW, Wong GK, Nelson DC, Bennett T.

BMC Biol. 2017 Jun 29;15(1):52. doi: 10.1186/s12915-017-0397-z.

4.

A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones.

Waters MT, Scaffidi A, Moulin SL, Sun YK, Flematti GR, Smith SM.

Plant Cell. 2015 Jul;27(7):1925-44. doi: 10.1105/tpc.15.00146. Epub 2015 Jul 14.

5.

Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system.

Toh S, Holbrook-Smith D, Stokes ME, Tsuchiya Y, McCourt P.

Chem Biol. 2014 Aug 14;21(8):988-98. doi: 10.1016/j.chembiol.2014.07.005. Epub 2014 Aug 7. Erratum in: Chem Biol. 2014 Sep 18;21(9):1253.

6.

Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.

Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM.

Development. 2012 Apr;139(7):1285-95. doi: 10.1242/dev.074567. Epub 2012 Feb 22.

7.

KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.

Waters MT, Smith SM.

Mol Plant. 2013 Jan;6(1):63-75. doi: 10.1093/mp/sss127. Epub 2012 Nov 9.

8.

Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may Perceive an Unknown Signal that is not Karrikin or Strigolactone.

Conn CE, Nelson DC.

Front Plant Sci. 2016 Jan 8;6:1219. doi: 10.3389/fpls.2015.01219. eCollection 2015.

9.

Functional redundancy in the control of seedling growth by the karrikin signaling pathway.

Stanga JP, Morffy N, Nelson DC.

Planta. 2016 Jun;243(6):1397-406. doi: 10.1007/s00425-015-2458-2. Epub 2016 Jan 11.

PMID:
26754282
10.

Plants that attack plants: molecular elucidation of plant parasitism.

Yoshida S, Shirasu K.

Curr Opin Plant Biol. 2012 Dec;15(6):708-13. doi: 10.1016/j.pbi.2012.07.004. Epub 2012 Aug 13. Review.

PMID:
22898297
11.

DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone.

Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC.

Curr Biol. 2012 Nov 6;22(21):2032-6. doi: 10.1016/j.cub.2012.08.007. Epub 2012 Sep 6.

12.

The origins and mechanisms of karrikin signalling.

Waters MT, Scaffidi A, Flematti GR, Smith SM.

Curr Opin Plant Biol. 2013 Oct;16(5):667-73. doi: 10.1016/j.pbi.2013.07.005. Epub 2013 Aug 14. Review.

PMID:
23954000
13.

Carlactone-independent seedling morphogenesis in Arabidopsis.

Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM.

Plant J. 2013 Oct;76(1):1-9. doi: 10.1111/tpj.12265. Epub 2013 Jul 25.

14.

The karrikin response system of Arabidopsis.

Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM.

Plant J. 2014 Aug;79(4):623-31. doi: 10.1111/tpj.12430. Epub 2014 Feb 24. Review.

15.

Smoke and Hormone Mirrors: Action and Evolution of Karrikin and Strigolactone Signaling.

Morffy N, Faure L, Nelson DC.

Trends Genet. 2016 Mar;32(3):176-188. doi: 10.1016/j.tig.2016.01.002. Epub 2016 Feb 2. Review.

PMID:
26851153
16.

Strigolactone Signaling and Evolution.

Waters MT, Gutjahr C, Bennett T, Nelson DC.

Annu Rev Plant Biol. 2017 Apr 28;68:291-322. doi: 10.1146/annurev-arplant-042916-040925. Epub 2017 Jan 11. Review.

PMID:
28125281
17.

An allelic series at the KARRIKIN INSENSITIVE 2 locus of Arabidopsis thaliana decouples ligand hydrolysis and receptor degradation from downstream signalling.

Yao J, Mashiguchi K, Scaffidi A, Akatsu T, Melville KT, Morita R, Morimoto Y, Smith SM, Seto Y, Flematti GR, Yamaguchi S, Waters MT.

Plant J. 2018 Oct;96(1):75-89. doi: 10.1111/tpj.14017. Epub 2018 Jul 23.

18.

The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana.

Li W, Nguyen KH, Chu HD, Ha CV, Watanabe Y, Osakabe Y, Leyva-González MA, Sato M, Toyooka K, Voges L, Tanaka M, Mostofa MG, Seki M, Seo M, Yamaguchi S, Nelson DC, Tian C, Herrera-Estrella L, Tran LP.

PLoS Genet. 2017 Nov 13;13(11):e1007076. doi: 10.1371/journal.pgen.1007076. eCollection 2017 Nov.

19.

CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants.

Brun G, Thoiron S, Braem L, Pouvreau JB, Montiel G, Lechat MM, Simier P, Gevaert K, Goormachtig S, Delavault P.

Plant Cell Environ. 2019 Sep;42(9):2612-2626. doi: 10.1111/pce.13594. Epub 2019 Jul 23.

PMID:
31134630
20.

Striga hermonthica MAX2 restores branching but not the Very Low Fluence Response in the Arabidopsis thaliana max2 mutant.

Liu Q, Zhang Y, Matusova R, Charnikhova T, Amini M, Jamil M, Fernandez-Aparicio M, Huang K, Timko MP, Westwood JH, Ruyter-Spira C, van der Krol S, Bouwmeester HJ.

New Phytol. 2014 Apr;202(2):531-41. doi: 10.1111/nph.12692. Epub 2014 Jan 31.

Supplemental Content

Support Center