Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Processive Incorporation of Deoxynucleoside Triphosphate Analogs by Single-Molecule DNA Polymerase I (Klenow Fragment) Nanocircuits.

Pugliese KM, Gul OT, Choi Y, Olsen TJ, Sims PC, Collins PG, Weiss GA.

J Am Chem Soc. 2015 Aug 5;137(30):9587-94. doi: 10.1021/jacs.5b02074. Epub 2015 Jul 17.

2.

Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase alpha and Klenow fragment (DNA polymerase I).

Chiaramonte M, Moore CL, Kincaid K, Kuchta RD.

Biochemistry. 2003 Sep 9;42(35):10472-81.

PMID:
12950174
5.

New pyrosequencing method to analyze the function of the Klenow fragment (EXO-) for unnatural nucleic acids: pyrophosphorolysis and incorporation efficiency.

Hanami T, Oyama R, Itoh M, Yasunishi-Koyama A, Hayashizaki Y.

Nucleosides Nucleotides Nucleic Acids. 2012;31(8):608-15. doi: 10.1080/15257770.2012.714516.

PMID:
22908951
6.

Electronic measurements of single-molecule processing by DNA polymerase I (Klenow fragment).

Olsen TJ, Choi Y, Sims PC, Gul OT, Corso BL, Dong C, Brown WA, Collins PG, Weiss GA.

J Am Chem Soc. 2013 May 29;135(21):7855-60. doi: 10.1021/ja311603r. Epub 2013 May 14.

7.

Exploration of factors driving incorporation of unnatural dNTPS into DNA by Klenow fragment (DNA polymerase I) and DNA polymerase alpha.

Kincaid K, Beckman J, Zivkovic A, Halcomb RL, Engels JW, Kuchta RD.

Nucleic Acids Res. 2005 May 6;33(8):2620-8. Print 2005.

8.

Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.

Garalde DR, Simon CA, Dahl JM, Wang H, Akeson M, Lieberman KR.

J Biol Chem. 2011 Apr 22;286(16):14480-92. doi: 10.1074/jbc.M111.218750. Epub 2011 Feb 28.

9.

How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides.

Astatke M, Grindley ND, Joyce CM.

J Mol Biol. 1998 Apr 24;278(1):147-65.

PMID:
9571040
10.

Discrimination against purine-pyrimidine mispairs in the polymerase active site of DNA polymerase I: a structural explanation.

Minnick DT, Liu L, Grindley ND, Kunkel TA, Joyce CM.

Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1194-9.

11.

Quantitation of cellular deoxynucleoside triphosphates.

Ferraro P, Franzolin E, Pontarin G, Reichard P, Bianchi V.

Nucleic Acids Res. 2010 Apr;38(6):e85. doi: 10.1093/nar/gkp1141. Epub 2009 Dec 11.

12.
14.

DNA polymerase beta: pre-steady-state kinetic analysis and roles of arginine-283 in catalysis and fidelity.

Werneburg BG, Ahn J, Zhong X, Hondal RJ, Kraynov VS, Tsai MD.

Biochemistry. 1996 Jun 4;35(22):7041-50.

PMID:
8679529
15.

2'-Deoxyribonucleoside 5'-triphosphates bearing 4-phenyl and 4-pyrimidinyl imidazoles as DNA polymerase substrates.

Vichier-Guerre S, Dugué L, Pochet S.

Org Biomol Chem. 2019 Jan 2;17(2):290-301. doi: 10.1039/c8ob02464b.

PMID:
30543241
17.
18.

Discrimination between right and wrong purine dNTPs by DNA polymerase I from Bacillus stearothermophilus.

Trostler M, Delier A, Beckman J, Urban M, Patro JN, Spratt TE, Beese LS, Kuchta RD.

Biochemistry. 2009 Jun 2;48(21):4633-41. doi: 10.1021/bi900104n.

19.

Role of the 2-amino group of purines during dNTP polymerization by human DNA polymerase alpha.

Patro JN, Urban M, Kuchta RD.

Biochemistry. 2009 Jan 13;48(1):180-9. doi: 10.1021/bi801823z.

20.

Supplemental Content

Support Center