Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87


Deletion of the DNA Ligase IV Gene in Candida glabrata Significantly Increases Gene-Targeting Efficiency.

Cen Y, Fiori A, Van Dijck P.

Eukaryot Cell. 2015 Aug;14(8):783-91. doi: 10.1128/EC.00281-14. Epub 2015 Jun 5.


Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains.

Cen Y, Timmermans B, Souffriau B, Thevelein JM, Van Dijck P.

Fungal Genet Biol. 2017 Oct;107:44-50. doi: 10.1016/j.fgb.2017.08.004. Epub 2017 Aug 16.


Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia.

Berila N, Borecka S, Dzugasova V, Bojnansky J, Subik J.

Int J Antimicrob Agents. 2009 Jun;33(6):574-8. doi: 10.1016/j.ijantimicag.2008.11.011. Epub 2009 Feb 3.


Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.

Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD.

Mol Microbiol. 2006 Aug;61(3):704-22. Epub 2006 Jun 27.


Mutation of the CgPDR16 gene attenuates azole tolerance and biofilm production in pathogenic Candida glabrata.

Culakova H, Dzugasova V, Perzelova J, Gbelska Y, Subik J.

Yeast. 2013 Oct;30(10):403-14. doi: 10.1002/yea.2978. Epub 2013 Aug 27.


Phenotypic analysis and virulence of Candida albicans LIG4 mutants.

Andaluz E, Calderone R, Reyes G, Larriba G.

Infect Immun. 2001 Jan;69(1):137-47.


Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B.

Hull CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2012 Aug;56(8):4223-32. doi: 10.1128/AAC.06253-11. Epub 2012 May 21.


The fate of linear DNA in Saccharomyces cerevisiae and Candida glabrata: the role of homologous and non-homologous end joining.

Corrigan MW, Kerwin-Iosue CL, Kuczmarski AS, Amin KB, Wykoff DD.

PLoS One. 2013 Jul 24;8(7):e69628. doi: 10.1371/journal.pone.0069628. Print 2013.


The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast.

Gregori C, Schüller C, Roetzer A, Schwarzmüller T, Ammerer G, Kuchler K.

Eukaryot Cell. 2007 Sep;6(9):1635-45. Epub 2007 Jul 6.


Proteomic analysis of cytosolic proteins associated with petite mutations in Candida glabrata.

Loureiro Y Penha CV, Kubitschek PH, Larcher G, Perales J, Rodriguez León I, Lopes-Bezerra LM, Bouchara JP.

Braz J Med Biol Res. 2010 Dec;43(12):1203-14. Epub 2010 Nov 12.


Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.

Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, Manai M, Sanglard D.

Antimicrob Agents Chemother. 2013 Jul;57(7):3182-93. doi: 10.1128/AAC.00555-13. Epub 2013 Apr 29.


Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata.

Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D.

PLoS One. 2011 Mar 9;6(3):e17589. doi: 10.1371/journal.pone.0017589.


Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland.

Szweda P, Gucwa K, Romanowska E, Dzierzanowska-Fangrat K, Naumiuk Ł, Brillowska-Dabrowska A, Wojciechowska-Koszko I, Milewski S.

J Med Microbiol. 2015 Jun;64(6):610-9. doi: 10.1099/jmm.0.000062. Epub 2015 Mar 27.


Phenotypic analysis of a family of transcriptional regulators, the zinc cluster proteins, in the human fungal pathogen Candida glabrata.

Klimova N, Yeung R, Kachurina N, Turcotte B.

G3 (Bethesda). 2014 Mar 21;4(5):931-40. doi: 10.1534/g3.113.010199.


Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei.

Bugeja HE, Boyce KJ, Weerasinghe H, Beard S, Jeziorowski A, Pasricha S, Payne M, Schreider L, Andrianopoulos A.

Fungal Genet Biol. 2012 Oct;49(10):772-8. doi: 10.1016/j.fgb.2012.08.003. Epub 2012 Aug 17.


Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates.

Tsai HF, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, Marr KA, Bennett JE.

Antimicrob Agents Chemother. 2010 Aug;54(8):3308-17. doi: 10.1128/AAC.00535-10. Epub 2010 Jun 14.


Candida and candidaemia. Susceptibility and epidemiology.

Arendrup MC.

Dan Med J. 2013 Nov;60(11):B4698. Review.


A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae.

Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K.

Fungal Genet Biol. 2008 Jun;45(6):878-89. doi: 10.1016/j.fgb.2007.12.010. Epub 2008 Jan 11.


Relationships between respiration and susceptibility to azole antifungals in Candida glabrata.

Brun S, Aubry C, Lima O, Filmon R, Bergès T, Chabasse D, Bouchara JP.

Antimicrob Agents Chemother. 2003 Mar;47(3):847-53.

Supplemental Content

Support Center