Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Impacts of the Minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia.

Giang A, Stokes LC, Streets DG, Corbitt ES, Selin NE.

Environ Sci Technol. 2015 May 5;49(9):5326-35. doi: 10.1021/acs.est.5b00074. Epub 2015 Apr 16.

PMID:
25851589
2.

Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

Tian H, Wang Y, Cheng K, Qu Y, Hao J, Xue Z, Chai F.

J Air Waste Manag Assoc. 2012 May;62(5):576-86.

PMID:
22696807
3.

Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.

Hu Y, Cheng H.

Environ Pollut. 2016 Nov;218:1209-1221. doi: 10.1016/j.envpol.2016.08.077. Epub 2016 Sep 2. Review.

PMID:
27596303
4.

Atmospheric mercury footprints of nations.

Liang S, Wang Y, Cinnirella S, Pirrone N.

Environ Sci Technol. 2015 Mar 17;49(6):3566-74. doi: 10.1021/es503977y. Epub 2015 Feb 27.

5.

Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

Sun R, Sonke JE, Heimbürger LE, Belkin HE, Liu G, Shome D, Cukrowska E, Liousse C, Pokrovsky OS, Streets DG.

Environ Sci Technol. 2014 Jul 1;48(13):7660-8. doi: 10.1021/es501208a. Epub 2014 Jun 13.

PMID:
24905585
6.

Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China.

Zhang L, Wang S, Meng Y, Hao J.

Environ Sci Technol. 2012 Jun 5;46(11):6385-92. doi: 10.1021/es300286n. Epub 2012 May 17.

PMID:
22533359
7.

Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico.

García GF, Álvarez HB, Echeverría RS, de Alba SR, Rueda VM, Dosantos EC, Cruz GV.

J Air Waste Manag Assoc. 2017 Sep;67(9):973-985. doi: 10.1080/10962247.2017.1314871. Epub 2017 May 12.

PMID:
28498787
8.

Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007.

Tian H, Wang Y, Xue Z, Qu Y, Chai F, Hao J.

Sci Total Environ. 2011 Jul 15;409(16):3078-81. doi: 10.1016/j.scitotenv.2011.04.039. Epub 2011 May 31.

PMID:
21621816
9.

Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

Bohnengel B, Patiño-Echeverri D, Bergerson J.

Environ Sci Technol. 2014 Aug 19;48(16):9908-16. doi: 10.1021/es5015828. Epub 2014 Jul 24.

PMID:
25025127
10.

Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.

Wang S, Zhang L, Wu Y, Ancora MP, Zhao Y, Hao J.

J Air Waste Manag Assoc. 2010 Jun;60(6):722-30.

PMID:
20564998
11.

Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China.

Chen J, Liu G, Kang Y, Wu B, Sun R, Zhou C, Wu D.

Chemosphere. 2013 Feb;90(6):1925-32. doi: 10.1016/j.chemosphere.2012.10.032. Epub 2012 Nov 11.

PMID:
23149189
12.

Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.

Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, St Louis VL, Sunderland EM.

Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):526-31. doi: 10.1073/pnas.1516312113. Epub 2016 Jan 4.

13.

Costs and Benefits of Installing Flue-Gas Desulfurization Units at Coal-Fired Power Plants in India.

Cropper ML, Guttikunda S, Jawahar P, Malik K, Partridge I.

In: Mock CN, Nugent R, Kobusingye O, Smith KR, editors. Injury Prevention and Environmental Health. 3rd edition. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2017 Oct 27. Chapter 13.

14.

Expected ozone benefits of reducing nitrogen oxide (NOx) emissions from coal-fired electricity generating units in the eastern United States.

Vinciguerra T, Bull E, Canty T, He H, Zalewsky E, Woodman M, Aburn G, Ehrman S, Dickerson RR.

J Air Waste Manag Assoc. 2017 Mar;67(3):279-291. doi: 10.1080/10962247.2016.1230564.

PMID:
27650304
15.

Local deposition of mercury in topsoils around coal-fired power plants: is it always true?

Rodriguez Martin JA, Nanos N, Grigoratos T, Carbonell G, Samara C.

Environ Sci Pollut Res Int. 2014 Sep;21(17):10205-14. doi: 10.1007/s11356-014-2873-0. Epub 2014 Apr 23.

PMID:
24756681
16.

Burden of Disease from Rising Coal-Fired Power Plant Emissions in Southeast Asia.

Koplitz SN, Jacob DJ, Sulprizio MP, Myllyvirta L, Reid C.

Environ Sci Technol. 2017 Feb 7;51(3):1467-1476. doi: 10.1021/acs.est.6b03731. Epub 2017 Jan 12.

17.

Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

Xu C, Hong J, Ren Y, Wang Q, Yuan X.

Environ Sci Pollut Res Int. 2015 Aug;22(16):12384-95. doi: 10.1007/s11356-015-4539-y. Epub 2015 Apr 23.

PMID:
25903190
18.

[Development of mercury emission inventory from coal combustion in China].

Jiang JK, Hao JM, Wu Y, Streets DG, Duan L, Tian HZ.

Huan Jing Ke Xue. 2005 Mar;26(2):34-9. Chinese.

PMID:
16004296
19.

Projections of global mercury emissions in 2050.

Streets DG, Zhang Q, Wu Y.

Environ Sci Technol. 2009 Apr 15;43(8):2983-8.

PMID:
19475981
20.

Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978-2014.

Wu Q, Wang S, Li G, Liang S, Lin CJ, Wang Y, Cai S, Liu K, Hao J.

Environ Sci Technol. 2016 Dec 20;50(24):13428-13435. Epub 2016 Dec 1.

PMID:
27993067

Supplemental Content

Support Center