Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering.

Stevens KR, Miller JS, Blakely BL, Chen CS, Bhatia SN.

J Biomed Mater Res A. 2015 Oct;103(10):3331-8. doi: 10.1002/jbm.a.35478. Epub 2015 Apr 30.

2.

Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.

Neumann AJ, Quinn T, Bryant SJ.

Acta Biomater. 2016 Jul 15;39:1-11. doi: 10.1016/j.actbio.2016.05.015. Epub 2016 May 11.

3.

Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics.

Shubin AD, Felong TJ, Schutrum BE, Joe DSL, Ovitt CE, Benoit DSW.

Acta Biomater. 2017 Mar 1;50:437-449. doi: 10.1016/j.actbio.2016.12.049. Epub 2016 Dec 27.

4.

Development of a biostable replacement for PEGDA hydrogels.

Browning MB, Cosgriff-Hernandez E.

Biomacromolecules. 2012 Mar 12;13(3):779-86. doi: 10.1021/bm201707z. Epub 2012 Feb 22.

PMID:
22324325
5.

Determination of the in vivo degradation mechanism of PEGDA hydrogels.

Browning MB, Cereceres SN, Luong PT, Cosgriff-Hernandez EM.

J Biomed Mater Res A. 2014 Dec;102(12):4244-51. doi: 10.1002/jbm.a.35096. Epub 2014 Feb 13.

6.

Assessment of hepatocellular function within PEG hydrogels.

Underhill GH, Chen AA, Albrecht DR, Bhatia SN.

Biomaterials. 2007 Jan;28(2):256-70. Epub 2006 Sep 18.

PMID:
16979755
7.

Bioactive hydrogels made from step-growth derived PEG-peptide macromers.

Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, Chen CS.

Biomaterials. 2010 May;31(13):3736-43. doi: 10.1016/j.biomaterials.2010.01.058. Epub 2010 Feb 6.

8.

In situ crosslinkable hyaluronan hydrogels for tissue engineering.

Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD.

Biomaterials. 2004 Mar-Apr;25(7-8):1339-48.

PMID:
14643608
9.

Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels.

Moeinzadeh S, Barati D, He X, Jabbari E.

Biomacromolecules. 2012 Jul 9;13(7):2073-86. doi: 10.1021/bm300453k. Epub 2012 Jun 11.

PMID:
22642902
10.

Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds.

Kim J, Lee KW, Hefferan TE, Currier BL, Yaszemski MJ, Lu L.

Biomacromolecules. 2008 Jan;9(1):149-57. Epub 2007 Dec 12.

PMID:
18072747
11.

Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels.

Wang C, Tong X, Jiang X, Yang F.

J Biomed Mater Res A. 2017 Mar;105(3):770-778. doi: 10.1002/jbm.a.35947. Epub 2016 Nov 18.

12.

Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels.

Leslie-Barbick JE, Moon JJ, West JL.

J Biomater Sci Polym Ed. 2009;20(12):1763-79. doi: 10.1163/156856208X386381.

PMID:
19723440
13.

A factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels.

Lam J, Kim K, Lu S, Tabata Y, Scott DW, Mikos AG, Kasper FK.

J Biomed Mater Res A. 2014 Oct;102(10):3477-87. doi: 10.1002/jbm.a.35015. Epub 2013 Nov 15.

14.

Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

Zhang X, Xu B, Puperi DS, Yonezawa AL, Wu Y, Tseng H, Cuchiara ML, West JL, Grande-Allen KJ.

Acta Biomater. 2015 Mar;14:11-21. doi: 10.1016/j.actbio.2014.11.042. Epub 2014 Nov 26.

15.

Synthesis and characterization of cyclic acetal based degradable hydrogels.

Kaihara S, Matsumura S, Fisher JP.

Eur J Pharm Biopharm. 2008 Jan;68(1):67-73. Epub 2007 Jul 13.

PMID:
17888640
16.

RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells.

Kudva AK, Luyten FP, Patterson J.

J Biomed Mater Res A. 2018 Jan;106(1):33-42. doi: 10.1002/jbm.a.36208. Epub 2017 Sep 23.

PMID:
28875574
17.

The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels.

Amer LD, Bryant SJ.

Ann Biomed Eng. 2016 Jun;44(6):1959-69. doi: 10.1007/s10439-016-1608-4. Epub 2016 Apr 14.

18.

Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering.

Chen JX, Yuan J, Wu YL, Wang P, Zhao P, Lv GZ, Chen JH.

J Biomed Mater Res A. 2018 Jan;106(1):192-200. doi: 10.1002/jbm.a.36222. Epub 2017 Sep 28.

PMID:
28884502
19.

Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.

Skaalure SC, Dimson SO, Pennington AM, Bryant SJ.

Acta Biomater. 2014 Aug;10(8):3409-20. doi: 10.1016/j.actbio.2014.04.013. Epub 2014 Apr 24.

PMID:
24769116
20.

Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering.

Zhang C, Sangaj N, Hwang Y, Phadke A, Chang CW, Varghese S.

Acta Biomater. 2011 Sep;7(9):3362-9. doi: 10.1016/j.actbio.2011.05.024. Epub 2011 May 27.

PMID:
21664305

Supplemental Content

Support Center