Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153


Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.

Chen Z, Hagen DE, Elsik CG, Ji T, Morris CJ, Moon LE, Rivera RM.

Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4618-23. doi: 10.1073/pnas.1422088112. Epub 2015 Mar 30.


Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann.

Chen Z, Robbins KM, Wells KD, Rivera RM.

Epigenetics. 2013 Jun;8(6):591-601. doi: 10.4161/epi.24655. Epub 2013 May 10.


Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome.

Hori N, Nagai M, Hirayama M, Hirai T, Matsuda K, Hayashi M, Tanaka T, Ozawa T, Horike S.

Anim Reprod Sci. 2010 Dec;122(3-4):303-12. doi: 10.1016/j.anireprosci.2010.09.008. Epub 2010 Oct 7.


The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.

Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, Jouannet P, Le Bouc Y, Gicquel C.

J Med Genet. 2006 Dec;43(12):902-7. Epub 2006 Jul 6.


Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies.

Lim D, Bowdin SC, Tee L, Kirby GA, Blair E, Fryer A, Lam W, Oley C, Cole T, Brueton LA, Reik W, Macdonald F, Maher ER.

Hum Reprod. 2009 Mar;24(3):741-7. doi: 10.1093/humrep/den406. Epub 2008 Dec 10.


Global misregulation of genes largely uncoupled to DNA methylome epimutations characterizes a congenital overgrowth syndrome.

Chen Z, Hagen DE, Ji T, Elsik CG, Rivera RM.

Sci Rep. 2017 Oct 4;7(1):12667. doi: 10.1038/s41598-017-13012-z.


Tissue-specific and minor inter-individual variation in imprinting of IGF2R is a common feature of Bos taurus Concepti and not correlated with fetal weight.

Bebbere D, Bauersachs S, F├╝rst RW, Reichenbach HD, Reichenbach M, Medugorac I, Ulbrich SE, Wolf E, Ledda S, Hiendleder S.

PLoS One. 2013 Apr 8;8(4):e59564. doi: 10.1371/journal.pone.0059564. Print 2013.


Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders.

Soejima H, Higashimoto K.

J Hum Genet. 2013 Jul;58(7):402-9. doi: 10.1038/jhg.2013.51. Epub 2013 May 30. Review.


Relaxation of insulin-like growth factor 2 imprinting and discordant methylation at KvDMR1 in two first cousins affected by Beckwith-Wiedemann and Klippel-Trenaunay-Weber syndromes.

Sperandeo MP, Ungaro P, Vernucci M, Pedone PV, Cerrato F, Perone L, Casola S, Cubellis MV, Bruni CB, Andria G, Sebastio G, Riccio A.

Am J Hum Genet. 2000 Mar;66(3):841-7.


Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome.

Engel JR, Smallwood A, Harper A, Higgins MJ, Oshimura M, Reik W, Schofield PN, Maher ER.

J Med Genet. 2000 Dec;37(12):921-6.


Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies.

Hiura H, Okae H, Miyauchi N, Sato F, Sato A, Van De Pette M, John RM, Kagami M, Nakai K, Soejima H, Ogata T, Arima T.

Hum Reprod. 2012 Aug;27(8):2541-8. doi: 10.1093/humrep/des197. Epub 2012 Jun 6.


Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development.

Weksberg R, Smith AC, Squire J, Sadowski P.

Hum Mol Genet. 2003 Apr 1;12 Spec No 1:R61-8. Review.


A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome.

Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, Smallwood AC, Joyce JA, Schofield PN, Reik W, Nicholls RD, Weksberg R, Driscoll DJ, Maher ER, Shows TB, Higgins MJ.

Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8064-9.


Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci.

Azzi S, Rossignol S, Steunou V, Sas T, Thibaud N, Danton F, Le Jule M, Heinrichs C, Cabrol S, Gicquel C, Le Bouc Y, Netchine I.

Hum Mol Genet. 2009 Dec 15;18(24):4724-33. doi: 10.1093/hmg/ddp435. Epub 2009 Sep 14.


Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome.

Gaston V, Le Bouc Y, Soupre V, Burglen L, Donadieu J, Oro H, Audry G, Vazquez MP, Gicquel C.

Eur J Hum Genet. 2001 Jun;9(6):409-18.


Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing.

Chen Z, Hagen DE, Wang J, Elsik CG, Ji T, Siqueira LG, Hansen PJ, Rivera RM.

Epigenetics. 2016 Jul 2;11(7):501-16. doi: 10.1080/15592294.2016.1184805. Epub 2016 May 31.


Beckwith-Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi.

Paganini L, Carlessi N, Fontana L, Silipigni R, Motta S, Fiori S, Guerneri S, Lalatta F, Cereda A, Sirchia S, Miozzo M, Tabano S.

Epigenetics. 2015;10(7):643-9. doi: 10.1080/15592294.2015.1057383.


Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith-Wiedemann syndrome.

Joyce JA, Lam WK, Catchpoole DJ, Jenks P, Reik W, Maher ER, Schofield PN.

Hum Mol Genet. 1997 Sep;6(9):1543-8.


Supplemental Content

Support Center