Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96


In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology.

Fazli M, Harrison JJ, Gambino M, Givskov M, Tolker-Nielsen T.

Appl Environ Microbiol. 2015 Jun;81(11):3623-30. doi: 10.1128/AEM.03909-14. Epub 2015 Mar 20.


The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia.

Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, Ryan RP, Tolker-Nielsen T.

Mol Microbiol. 2011 Oct;82(2):327-41. doi: 10.1111/j.1365-2958.2011.07814.x. Epub 2011 Sep 7.


The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349.

Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker-Nielsen T.

Microbiologyopen. 2013 Feb;2(1):105-22. doi: 10.1002/mbo3.61. Epub 2012 Dec 25.


Burkholderia cenocepacia ShvR-regulated genes that influence colony morphology, biofilm formation, and virulence.

Subramoni S, Nguyen DT, Sokol PA.

Infect Immun. 2011 Aug;79(8):2984-97. doi: 10.1128/IAI.00170-11. Epub 2011 Jun 20.


Key Players and Individualists of Cyclic-di-GMP Signaling in Burkholderia cenocepacia.

Richter AM, Fazli M, Schmid N, Shilling R, Suppiger A, Givskov M, Eberl L, Tolker-Nielsen T.

Front Microbiol. 2019 Jan 10;9:3286. doi: 10.3389/fmicb.2018.03286. eCollection 2018.


Molecular approaches to pathogenesis study of Burkholderia cenocepacia, an important cystic fibrosis opportunistic bacterium.

Bazzini S, Udine C, Riccardi G.

Appl Microbiol Biotechnol. 2011 Dec;92(5):887-95. doi: 10.1007/s00253-011-3616-5. Epub 2011 Oct 14. Review.


Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence.

Drevinek P, Mahenthiralingam E.

Clin Microbiol Infect. 2010 Jul;16(7):821-30. doi: 10.1111/j.1469-0691.2010.03237.x. Review.


Burkholderia cenocepacia differential gene expression during host-pathogen interactions and adaptation to the host environment.

O'Grady EP, Sokol PA.

Front Cell Infect Microbiol. 2011 Dec 9;1:15. doi: 10.3389/fcimb.2011.00015. eCollection 2011.


A markerless deletion method for genetic manipulation of Burkholderia cenocepacia and other multidrug-resistant gram-negative bacteria.

Aubert DF, Hamad MA, Valvano MA.

Methods Mol Biol. 2014;1197:311-27. doi: 10.1007/978-1-4939-1261-2_18.


The suhB gene of Burkholderia cenocepacia is required for protein secretion, biofilm formation, motility and polymyxin B resistance.

Rosales-Reyes R, Saldías MS, Aubert DF, El-Halfawy OM, Valvano MA.

Microbiology. 2012 Sep;158(Pt 9):2315-24. doi: 10.1099/mic.0.060988-0. Epub 2012 Jul 5.


Tyrosine Phosphorylation and Dephosphorylation in Burkholderia cenocepacia Affect Biofilm Formation, Growth under Nutritional Deprivation, and Pathogenicity.

Andrade A, Tavares-Carreón F, Khodai-Kalaki M, Valvano MA.

Appl Environ Microbiol. 2015 Nov 20;82(3):843-56. doi: 10.1128/AEM.03513-15. Print 2016 Feb 1.


Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis.

Mueller KE, Wolf K, Fields KA.

MBio. 2016 Jan 19;7(1):e01817-15. doi: 10.1128/mBio.01817-15.


A system for the construction of targeted unmarked gene deletions in the genus Burkholderia.

Flannagan RS, Linn T, Valvano MA.

Environ Microbiol. 2008 Jun;10(6):1652-60. doi: 10.1111/j.1462-2920.2008.01576.x. Epub 2008 Mar 13.


Cis-2-dodecenoic acid quorum sensing system modulates N-acyl homoserine lactone production through RpfR and cyclic di-GMP turnover in Burkholderia cenocepacia.

Deng Y, Lim A, Wang J, Zhou T, Chen S, Lee J, Dong YH, Zhang LH.

BMC Microbiol. 2013 Jul 1;13:148. doi: 10.1186/1471-2180-13-148.


Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315.

Sass AM, Van Acker H, Förstner KU, Van Nieuwerburgh F, Deforce D, Vogel J, Coenye T.

BMC Genomics. 2015 Oct 13;16:775. doi: 10.1186/s12864-015-1993-3.


Characterization of a novel two-component system in Burkholderia cenocepacia.

Merry CR, Perkins M, Mu L, Peterson BK, Knackstedt RW, Weingart CL.

Curr Microbiol. 2015 Apr;70(4):556-61. doi: 10.1007/s00284-014-0744-z. Epub 2014 Dec 18.


Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells.

Buroni S, Matthijs N, Spadaro F, Van Acker H, Scoffone VC, Pasca MR, Riccardi G, Coenye T.

Antimicrob Agents Chemother. 2014 Dec;58(12):7424-9. doi: 10.1128/AAC.03800-14. Epub 2014 Sep 29.


The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of Burkholderia cenocepacia.

Sass AM, Schmerk C, Agnoli K, Norville PJ, Eberl L, Valvano MA, Mahenthiralingam E.

ISME J. 2013 Aug;7(8):1568-81. doi: 10.1038/ismej.2013.36. Epub 2013 Mar 14.


Deciphering the role of RND efflux transporters in Burkholderia cenocepacia.

Bazzini S, Udine C, Sass A, Pasca MR, Longo F, Emiliani G, Fondi M, Perrin E, Decorosi F, Viti C, Giovannetti L, Leoni L, Fani R, Riccardi G, Mahenthiralingam E, Buroni S.

PLoS One. 2011 Apr 19;6(4):e18902. doi: 10.1371/journal.pone.0018902.

Supplemental Content

Support Center