Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Defect-mediated modulation of optical properties in vertically aligned ZnO nanowires via substrate-assisted Ga incorporation.

Park JB, Chun YT, Lee YB, Sohn JI, Hong WK.

Nanotechnology. 2015 Apr 10;26(14):145202. doi: 10.1088/0957-4484/26/14/145202. Epub 2015 Mar 16.

PMID:
25771907
2.

The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct.

Black K, Jones AC, Alexandrou I, Heys PN, Chalker PR.

Nanotechnology. 2010 Jan 29;21(4):045701. doi: 10.1088/0957-4484/21/4/045701. Epub 2009 Dec 10.

PMID:
20009167
3.
4.

Vertically well aligned P-doped ZnO nanowires synthesized on ZnO-Ga/glass templates.

Hsu CL, Chang SJ, Lin YR, Tsai SY, Chen IC.

Chem Commun (Camb). 2005 Jul 28;(28):3571-3. Epub 2005 Jun 10.

PMID:
16010327
5.

Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires.

Dhara S, Giri P.

Nanoscale Res Lett. 2011 Aug 22;6:504. doi: 10.1186/1556-276X-6-504.

6.

Growth behaviour of well-aligned ZnO nanowires on a Si substrate at low temperature and their optical properties.

Jeong JS, Lee JY, Cho JH, Lee CJ, An SJ, Yi GC, Gronsky R.

Nanotechnology. 2005 Oct;16(10):2455-61. doi: 10.1088/0957-4484/16/10/078. Epub 2005 Sep 12.

PMID:
20818035
8.
9.

Luminescent properties of ZnO nanowires and as-grown ensembles.

Ton-That C, Foley M, Phillips MR.

Nanotechnology. 2008 Oct 15;19(41):415606. doi: 10.1088/0957-4484/19/41/415606. Epub 2008 Sep 4.

PMID:
21832651
10.

Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer.

Cha SN, Song BG, Jang JE, Jung JE, Han IT, Ha JH, Hong JP, Kang DJ, Kim JM.

Nanotechnology. 2008 Jun 11;19(23):235601. doi: 10.1088/0957-4484/19/23/235601. Epub 2008 May 7.

PMID:
21825796
11.

Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior.

Ahn CH, Han WS, Kong BH, Cho HK.

Nanotechnology. 2009 Jan 7;20(1):015601. doi: 10.1088/0957-4484/20/1/015601. Epub 2008 Dec 8.

PMID:
19417255
12.

Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires.

Wang C, Wang Y, Zhang G, Peng C, Yang G.

Phys Chem Chem Phys. 2014 Feb 28;16(8):3771-6. doi: 10.1039/c3cp54289k.

PMID:
24430004
13.

Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires.

Ahmad M, Sun H, Zhu J.

ACS Appl Mater Interfaces. 2011 Apr;3(4):1299-305. doi: 10.1021/am200099c. Epub 2011 Mar 23.

PMID:
21410190
14.

Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion.

Ameen S, Akhtar MS, Song M, Shin HS.

ACS Appl Mater Interfaces. 2012 Aug;4(8):4405-12. doi: 10.1021/am301064j. Epub 2012 Aug 8.

PMID:
22827848
15.

Novel growth and properties of GaAs nanowires on Si substrates.

Kang JH, Gao Q, Joyce HJ, Tan HH, Jagadish C, Kim Y, Choi DY, Guo Y, Xu H, Zou J, Fickenscher MA, Smith LM, Jackson HE, Yarrison-Rice JM.

Nanotechnology. 2010 Jan 22;21(3):035604. doi: 10.1088/0957-4484/21/3/035604.

PMID:
19966397
16.

ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells.

Hu Q, Li Y, Huang F, Zhang Z, Ding K, Wei M, Lin Z.

Sci Rep. 2015 Jun 23;5:11499. doi: 10.1038/srep11499.

17.

Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties.

Biroju RK, Giri PK, Dhara S, Imakita K, Fujii M.

ACS Appl Mater Interfaces. 2014 Jan 8;6(1):377-87. doi: 10.1021/am404411c. Epub 2013 Dec 24.

PMID:
24367888
18.

Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate.

Tomioka K, Kobayashi Y, Motohisa J, Hara S, Fukui T.

Nanotechnology. 2009 Apr 8;20(14):145302. doi: 10.1088/0957-4484/20/14/145302. Epub 2009 Mar 17.

PMID:
19420521
19.

Structural and optical properties of self-catalytic GaAs:Mn nanowires grown by molecular beam epitaxy on silicon substrates.

Gas K, Sadowski J, Kasama T, Siusys A, Zaleszczyk W, Wojciechowski T, Morhange JF, Altintaş A, Xu HQ, Szuszkiewicz W.

Nanoscale. 2013 Aug 21;5(16):7410-8. doi: 10.1039/c3nr01145c. Epub 2013 Jul 5.

PMID:
23832244
20.

Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy.

Bastiman F, Küpers H, Somaschini C, Geelhaar L.

Nanotechnology. 2016 Mar 4;27(9):095601. doi: 10.1088/0957-4484/27/9/095601. Epub 2016 Jan 29.

PMID:
26822408

Supplemental Content

Support Center