Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 173

1.

NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.

Lawson MA, Paton-Hough JM, Evans HR, Walker RE, Harris W, Ratnabalan D, Snowden JA, Chantry AD.

PLoS One. 2015 Mar 13;10(3):e0119546. doi: 10.1371/journal.pone.0119546. eCollection 2015.

2.

Establishment of a new model of human multiple myeloma using NOD/SCID/gammac(null) (NOG) mice.

Miyakawa Y, Ohnishi Y, Tomisawa M, Monnai M, Kohmura K, Ueyama Y, Ito M, Ikeda Y, Kizaki M, Nakamura M.

Biochem Biophys Res Commun. 2004 Jan 9;313(2):258-62.

PMID:
14684154
3.

Development of an in vivo model of human multiple myeloma bone disease.

Alsina M, Boyce B, Devlin RD, Anderson JL, Craig F, Mundy GR, Roodman GD.

Blood. 1996 Feb 15;87(4):1495-501.

4.

Intratibial injection of human multiple myeloma cells in NOD/SCID IL-2Rγ(null) mice mimics human myeloma and serves as a valuable tool for the development of anticancer strategies.

Schueler J, Wider D, Klingner K, Siegers GM, May AM, Wäsch R, Fiebig HH, Engelhardt M.

PLoS One. 2013 Nov 6;8(11):e79939. doi: 10.1371/journal.pone.0079939. eCollection 2013.

5.

A review of current murine models of multiple myeloma used to assess the efficacy of therapeutic agents on tumour growth and bone disease.

Paton-Hough J, Chantry AD, Lawson MA.

Bone. 2015 Aug;77:57-68. doi: 10.1016/j.bone.2015.04.004. Epub 2015 Apr 11. Review.

PMID:
25868800
6.

Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival.

Croucher PI, De Hendrik R, Perry MJ, Hijzen A, Shipman CM, Lippitt J, Green J, Van Marck E, Van Camp B, Vanderkerken K.

J Bone Miner Res. 2003 Mar;18(3):482-92.

7.

The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects.

Hurchla MA, Garcia-Gomez A, Hornick MC, Ocio EM, Li A, Blanco JF, Collins L, Kirk CJ, Piwnica-Worms D, Vij R, Tomasson MH, Pandiella A, San Miguel JF, Garayoa M, Weilbaecher KN.

Leukemia. 2013 Feb;27(2):430-40. doi: 10.1038/leu.2012.183. Epub 2012 Jul 5.

8.

The use of animal models in multiple myeloma.

Libouban H.

Morphologie. 2015 Jun;99(325):63-72. doi: 10.1016/j.morpho.2015.01.003. Epub 2015 Apr 17. Review.

PMID:
25898798
9.

Characterization of a novel mouse model of multiple myeloma and its use in preclinical therapeutic assessment.

Fryer RA, Graham TJ, Smith EM, Walker-Samuel S, Morgan GJ, Robinson SP, Davies FE.

PLoS One. 2013;8(2):e57641. doi: 10.1371/journal.pone.0057641. Epub 2013 Feb 21.

10.

Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth.

Li X, Ling W, Khan S, Yaccoby S.

J Bone Miner Res. 2012 Aug;27(8):1635-48. doi: 10.1002/jbmr.1620.

11.

Interleukin-18 inhibits lodging and subsequent growth of human multiple myeloma cells in the bone marrow.

Yamashita K, Iwasaki T, Tsujimura T, Sugihara A, Yamada N, Ueda H, Okamura H, Futani H, Maruo S, Terada N.

Oncol Rep. 2002 Nov-Dec;9(6):1237-44.

PMID:
12375027
12.
13.

ARQ-197, a small-molecule inhibitor of c-Met, reduces tumour burden and prevents myeloma-induced bone disease in vivo.

Lath DL, Buckle CH, Evans HR, Fisher M, Down JM, Lawson MA, Chantry AD.

PLoS One. 2018 Jun 20;13(6):e0199517. doi: 10.1371/journal.pone.0199517. eCollection 2018.

14.
15.

[Establishment of multiple myeloma mouse models expressing brain derived neurotrophic factor].

Wang YD, Hu Y, Zhang L, Huang J, Sun CY.

Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2007 Oct;15(5):967-72. Chinese.

PMID:
17956671
16.

The effect of the dual PI3K and mTOR inhibitor BEZ235 on tumour growth and osteolytic bone disease in multiple myeloma.

Gan ZY, Fitter S, Vandyke K, To LB, Zannettino AC, Martin SK.

Eur J Haematol. 2015 Apr;94(4):343-54. doi: 10.1111/ejh.12436. Epub 2014 Sep 17.

PMID:
25179233
17.

Soluble rank ligand produced by myeloma cells causes generalised bone loss in multiple myeloma.

Buckle CH, De Leenheer E, Lawson MA, Yong K, Rabin N, Perry M, Vanderkerken K, Croucher PI.

PLoS One. 2012;7(8):e41127. doi: 10.1371/journal.pone.0041127. Epub 2012 Aug 29.

18.

Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo.

Edwards CM, Edwards JR, Lwin ST, Esparza J, Oyajobi BO, McCluskey B, Munoz S, Grubbs B, Mundy GR.

Blood. 2008 Mar 1;111(5):2833-42. Epub 2007 Dec 19.

19.

Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease.

Eda H, Santo L, Wein MN, Hu DZ, Cirstea DD, Nemani N, Tai YT, Raines SE, Kuhstoss SA, Munshi NC, Kronenberg HM, Raje NS.

J Bone Miner Res. 2016 Jun;31(6):1225-34. doi: 10.1002/jbmr.2789. Epub 2016 Feb 19.

20.

A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer.

Rabin N, Kyriakou C, Coulton L, Gallagher OM, Buckle C, Benjamin R, Singh N, Glassford J, Otsuki T, Nathwani AC, Croucher PI, Yong KL.

Leukemia. 2007 Oct;21(10):2181-91. Epub 2007 Jul 26.

PMID:
17657224

Supplemental Content

Support Center