Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 148

1.

Synthesis and Structural Evolution of Nickel-Cobalt Nanoparticles Under H2 and CO2.

Carenco S, Wu CH, Shavorskiy A, Alayoglu S, Somorjai GA, Bluhm H, Salmeron M.

Small. 2015 Jul 1;11(25):3045-53. doi: 10.1002/smll.201402795. Epub 2015 Feb 26.

PMID:
25727527
2.

Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions.

Tao F, Grass ME, Zhang Y, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung CK, Zhu Z, Liu Z, Salmeron M, Somorjai GA.

J Am Chem Soc. 2010 Jun 30;132(25):8697-703. doi: 10.1021/ja101502t.

PMID:
20521788
3.

In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.

Tuaev X, Rudi S, Petkov V, Hoell A, Strasser P.

ACS Nano. 2013 Jul 23;7(7):5666-74. doi: 10.1021/nn402406k. Epub 2013 Jul 12.

PMID:
23805992
4.

Structure and stability of nickel/nickel oxide core-shell nanoparticles.

D'Addato S, Grillo V, Altieri S, Tondi R, Valeri S, Frabboni S.

J Phys Condens Matter. 2011 May 4;23(17):175003. doi: 10.1088/0953-8984/23/17/175003. Epub 2011 Apr 14.

PMID:
21493971
5.

Ensemble versus Local Restructuring of Core-shell Nickel-Cobalt Nanoparticles upon Oxidation and Reduction Cycles.

Carenco S, Bonifacio CS, Yang JC.

Chemistry. 2018 Aug 14;24(46):12037-12043. doi: 10.1002/chem.201802764. Epub 2018 Jul 25.

PMID:
30011117
6.

Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles.

Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA.

Science. 2008 Nov 7;322(5903):932-4. doi: 10.1126/science.1164170. Epub 2008 Oct 9.

7.

Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.

Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M.

J Am Chem Soc. 2010 Jun 2;132(21):7418-28. doi: 10.1021/ja101108w.

PMID:
20459102
8.

CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy.

Naitabdi A, Boucly A, Rochet F, Fagiewicz R, Olivieri G, Bournel F, Benbalagh R, Sirotti F, Gallet JJ.

Nanoscale. 2018 Apr 5;10(14):6566-6580. doi: 10.1039/c7nr07981h.

PMID:
29577122
9.

Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation.

Melaet G, Ralston WT, Li CS, Alayoglu S, An K, Musselwhite N, Kalkan B, Somorjai GA.

J Am Chem Soc. 2014 Feb 12;136(6):2260-3. doi: 10.1021/ja412447q. Epub 2014 Jan 31.

PMID:
24460136
11.

Synthesis of triple-layered Ag@Co@Ni core-shell nanoparticles for the catalytic dehydrogenation of ammonia borane.

Qiu F, Liu G, Li L, Wang Y, Xu C, An C, Chen C, Xu Y, Huang Y, Wang Y, Jiao L, Yuan H.

Chemistry. 2014 Jan 7;20(2):505-9. doi: 10.1002/chem.201302943. Epub 2013 Dec 2.

PMID:
24302541
12.

Hydrothermal synthesis and characterization under dynamic conditions of cobalt oxide nanoparticles supported over magnesium oxide nano-plates.

Alayoglu S, Rosenberg DJ, Ahmed M.

Dalton Trans. 2016 Jun 14;45(24):9932-41. doi: 10.1039/c6dt00204h.

13.

Surface Segregation in CuNi Nanoparticle Catalysts During CO2 Hydrogenation: The Role of CO in the Reactant Mixture.

Zegkinoglou I, Pielsticker L, Han ZK, Divins NJ, Kordus D, Chen YT, Escudero C, Pérez-Dieste V, Zhu B, Gao Y, Cuenya BR.

J Phys Chem C Nanomater Interfaces. 2019 Apr 4;123(13):8421-8428. doi: 10.1021/acs.jpcc.8b09912. Epub 2019 Jan 15.

14.

In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.

Föttinger K, Rupprechter G.

Acc Chem Res. 2014 Oct 21;47(10):3071-9. doi: 10.1021/ar500220v. Epub 2014 Sep 23.

PMID:
25247260
16.

A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles.

Gálvez N, Valero E, Ceolin M, Trasobares S, López-Haro M, Calvino JJ, Domínguez-Vera JM.

Inorg Chem. 2010 Feb 15;49(4):1705-11. doi: 10.1021/ic902128g.

PMID:
20067250
17.

Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects.

Ahmadi M, Behafarid F, Cui C, Strasser P, Cuenya BR.

ACS Nano. 2013 Oct 22;7(10):9195-204. doi: 10.1021/nn403793a. Epub 2013 Sep 18.

PMID:
24015721
18.

Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.

Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel AI, Chupas P.

ACS Nano. 2009 Oct 27;3(10):3127-37. doi: 10.1021/nn900242v.

PMID:
19731934
19.

Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.

Guo H, Chen Y, Chen X, Wen R, Yue GH, Peng DL.

Nanotechnology. 2011 May 13;22(19):195604. doi: 10.1088/0957-4484/22/19/195604. Epub 2011 Mar 23.

PMID:
21430312
20.

In-situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H2) and oxidizing (O2) environments.

Zheng F, Alayoglu S, Guo J, Pushkarev V, Li Y, Glans PA, Chen JL, Somorjai G.

Nano Lett. 2011 Feb 9;11(2):847-53. doi: 10.1021/nl104209c. Epub 2011 Jan 19.

PMID:
21247197

Supplemental Content

Support Center