Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression.

Robinson RT, Orme IM, Cooper AM.

Immunol Rev. 2015 Mar;264(1):46-59. doi: 10.1111/imr.12259. Review.

PMID:
25703551
2.

T cells and adaptive immunity to Mycobacterium tuberculosis in humans.

Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE.

Immunol Rev. 2015 Mar;264(1):74-87. doi: 10.1111/imr.12274. Review.

PMID:
25703553
3.

MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis.

Rothchild AC, Sissons JR, Shafiani S, Plaisier C, Min D, Mai D, Gilchrist M, Peschon J, Larson RP, Bergthaler A, Baliga NS, Urdahl KB, Aderem A.

Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6172-E6181. Epub 2016 Sep 28.

4.

Rapid rebound of the Treg compartment in DEREG mice limits the impact of Treg depletion on mycobacterial burden, but prevents autoimmunity.

Berod L, Stüve P, Varela F, Behrends J, Swallow M, Kruse F, Krull F, Ghorbani P, Mayer CT, Hölscher C, Sparwasser T.

PLoS One. 2014 Jul 22;9(7):e102804. doi: 10.1371/journal.pone.0102804. eCollection 2014.

5.

Role of the CD137 ligand (CD137L) signaling pathway during Mycobacterium tuberculosis infection.

Martínez Gómez JM, Koh VH, Yan B, Lin W, Ang ML, Rahim SZ, Pethe K, Schwarz H, Alonso S.

Immunobiology. 2014 Jan;219(1):78-86. doi: 10.1016/j.imbio.2013.08.009. Epub 2013 Aug 23.

PMID:
24091276
6.

IL-22 is mainly produced by IFNγ-secreting cells but is dispensable for host protection against Mycobacterium tuberculosis infection.

Behrends J, Renauld JC, Ehlers S, Hölscher C.

PLoS One. 2013;8(2):e57379. doi: 10.1371/journal.pone.0057379. Epub 2013 Feb 27.

7.

Growth factor receptor bound protein 2-associated binder 2, a scaffolding adaptor protein, negatively regulates host immunity against tuberculosis.

Hu S, Zhang Y, Yu Y, Jin D, Zhang X, Gu S, Jia H, Chen X, Zhang Z, Jin Q, Ke Y, Liu H.

Am J Respir Cell Mol Biol. 2014 Oct;51(4):575-85. doi: 10.1165/rcmb.2013-0329OC.

PMID:
24805943
8.

New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells.

Gupta N, Kumar R, Agrawal B.

Front Immunol. 2018 Apr 10;9:709. doi: 10.3389/fimmu.2018.00709. eCollection 2018. Review.

9.

The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice.

Palma C, Iona E, Giannoni F, Pardini M, Brunori L, Orefici G, Fattorini L, Cassone A.

Cell Microbiol. 2007 Jun;9(6):1455-65. Epub 2007 Jan 22.

PMID:
17250590
11.

Epitope-driven TB vaccine development: a streamlined approach using immuno-informatics, ELISpot assays, and HLA transgenic mice.

McMurry JA, Kimball S, Lee JH, Rivera D, Martin W, Weiner DB, Kutzler M, Sherman DR, Kornfeld H, De Groot AS.

Curr Mol Med. 2007 Jun;7(4):351-68.

PMID:
17584075
12.

Early T-cell responses in tuberculosis immunity.

Winslow GM, Cooper A, Reiley W, Chatterjee M, Woodland DL.

Immunol Rev. 2008 Oct;225:284-99. doi: 10.1111/j.1600-065X.2008.00693.x. Review.

13.

Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation.

Woodworth JS, Aagaard CS, Hansen PR, Cassidy JP, Agger EM, Andersen P.

J Immunol. 2014 Apr 1;192(7):3247-58. doi: 10.4049/jimmunol.1300283. Epub 2014 Feb 26.

14.

Diverging biological roles among human monocyte subsets in the context of tuberculosis infection.

Balboa L, Barrios-Payan J, González-Domínguez E, Lastrucci C, Lugo-Villarino G, Mata-Espinoza D, Schierloh P, Kviatcovsky D, Neyrolles O, Maridonneau-Parini I, Sánchez-Torres C, Sasiain Mdel C, Hernández-Pando R.

Clin Sci (Lond). 2015 Aug;129(4):319-30. doi: 10.1042/CS20150021.

PMID:
25858460
15.

Mycobacterium tuberculosis promotes Th17 expansion via regulation of human dendritic cells toward a high CD14 and low IL-12p70 phenotype that reprograms upon exogenous IFN-γ.

Søndergaard JN, Laursen JM, Rosholm LB, Brix S.

Int Immunol. 2014 Dec;26(12):705-16. doi: 10.1093/intimm/dxu085. Epub 2014 Sep 15.

PMID:
25223368
16.

Memory T cell subsets in tuberculosis: what should we be targeting?

Henao-Tamayo M, Ordway DJ, Orme IM.

Tuberculosis (Edinb). 2014 Sep;94(5):455-61. doi: 10.1016/j.tube.2014.05.001. Epub 2014 Jun 17. Review.

PMID:
24993316
17.

The balance between protective and pathogenic immune responses in the TB-infected lung.

Orme IM, Robinson RT, Cooper AM.

Nat Immunol. 2015 Jan;16(1):57-63. doi: 10.1038/ni.3048. Review.

PMID:
25521685
18.

Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response.

Subbian S, Tsenova L, Yang G, O'Brien P, Parsons S, Peixoto B, Taylor L, Fallows D, Kaplan G.

Open Biol. 2011 Dec;1(4):110016. doi: 10.1098/rsob.110016.

19.

MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis.

Gold MC, Napier RJ, Lewinsohn DM.

Immunol Rev. 2015 Mar;264(1):154-66. doi: 10.1111/imr.12271. Review.

20.

Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity.

Joosten SA, van Meijgaarden KE, van Weeren PC, Kazi F, Geluk A, Savage ND, Drijfhout JW, Flower DR, Hanekom WA, Klein MR, Ottenhoff TH.

PLoS Pathog. 2010 Feb 26;6(2):e1000782. doi: 10.1371/journal.ppat.1000782.

Supplemental Content

Support Center