Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

Genetic profiling of advanced radioactive iodine-resistant differentiated thyroid cancer and correlation with axitinib efficacy.

Schechter RB, Nagilla M, Joseph L, Reddy P, Khattri A, Watson S, Locati LD, Licitra L, Greco A, Pelosi G, Carcangiu ML, Lingen MW, Seiwert TY, Cohen EE.

Cancer Lett. 2015 Apr 10;359(2):269-74. doi: 10.1016/j.canlet.2015.01.024. Epub 2015 Jan 29.

PMID:
25641339
2.

Highly Concordant Key Genetic Alterations in Primary Tumors and Matched Distant Metastases in Differentiated Thyroid Cancer.

Sohn SY, Park WY, Shin HT, Bae JS, Ki CS, Oh YL, Kim SW, Chung JH.

Thyroid. 2016 May;26(5):672-82. doi: 10.1089/thy.2015.0527.

PMID:
26971368
3.

Genotype Correlations With Blood Pressure and Efficacy From a Randomized Phase III Trial of Second-Line Axitinib Versus Sorafenib in Metastatic Renal Cell Carcinoma.

Escudier B, Rini BI, Motzer RJ, Tarazi J, Kim S, Huang X, Rosbrook B, English PA, Loomis AK, Williams JA.

Clin Genitourin Cancer. 2015 Aug;13(4):328-337.e3. doi: 10.1016/j.clgc.2015.02.007. Epub 2015 Feb 21.

PMID:
25816720
4.

Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1.

Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, Janakiraman M, Solit D, Knauf JA, Tuttle RM, Ghossein RA, Fagin JA.

Cancer Res. 2009 Jun 1;69(11):4885-93. doi: 10.1158/0008-5472.CAN-09-0727.

5.

Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial.

Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, Sherman SI, Sherman EJ.

Lancet Oncol. 2016 Sep;17(9):1272-82. doi: 10.1016/S1470-2045(16)30166-8. Epub 2016 Jul 23.

6.

Axitinib treatment in advanced RAI-resistant differentiated thyroid cancer (DTC) and refractory medullary thyroid cancer (MTC).

Capdevila J, Trigo JM, Aller J, Manzano JL, Adrián SG, Llopis CZ, Reig Ò, Bohn U, Cajal TRY, Duran-Poveda M, Astorga BG, López-Alfonso A, Martínez JM, Porras I, Reina JJ, Palacios N, Grande E, Cillán E, Matos I, Grau JJ.

Eur J Endocrinol. 2017 Oct;177(4):309-317. doi: 10.1530/EJE-17-0243. Epub 2017 Jul 7.

PMID:
28687563
7.

Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis.

De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, Penault-Llorca F, Rougier P, Vincenzi B, Santini D, Tonini G, Cappuzzo F, Frattini M, Molinari F, Saletti P, De Dosso S, Martini M, Bardelli A, Siena S, Sartore-Bianchi A, Tabernero J, Macarulla T, Di Fiore F, Gangloff AO, Ciardiello F, Pfeiffer P, Qvortrup C, Hansen TP, Van Cutsem E, Piessevaux H, Lambrechts D, Delorenzi M, Tejpar S.

Lancet Oncol. 2010 Aug;11(8):753-62. doi: 10.1016/S1470-2045(10)70130-3. Epub 2010 Jul 8.

PMID:
20619739
8.

Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases.

Sabra MM, Dominguez JM, Grewal RK, Larson SM, Ghossein RA, Tuttle RM, Fagin JA.

J Clin Endocrinol Metab. 2013 May;98(5):E829-36. doi: 10.1210/jc.2012-3933. Epub 2013 Mar 26.

9.

Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study.

Cohen EE, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP, Kane MA, Sherman E, Kim S, Bycott P, Tortorici M, Shalinsky DR, Liau KF, Cohen RB.

J Clin Oncol. 2008 Oct 10;26(29):4708-13. doi: 10.1200/JCO.2007.15.9566. Epub 2008 Jun 9.

10.

Treatment of advanced thyroid cancer with axitinib: Phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments.

Locati LD, Licitra L, Agate L, Ou SH, Boucher A, Jarzab B, Qin S, Kane MA, Wirth LJ, Chen C, Kim S, Ingrosso A, Pithavala YK, Bycott P, Cohen EE.

Cancer. 2014 Sep 1;120(17):2694-703. doi: 10.1002/cncr.28766. Epub 2014 May 20.

11.

Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer.

Santarpia L, El-Naggar AK, Cote GJ, Myers JN, Sherman SI.

J Clin Endocrinol Metab. 2008 Jan;93(1):278-84. Epub 2007 Nov 7.

PMID:
17989125
12.

Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population.

Abubaker J, Jehan Z, Bavi P, Sultana M, Al-Harbi S, Ibrahim M, Al-Nuaim A, Ahmed M, Amin T, Al-Fehaily M, Al-Sanea O, Al-Dayel F, Uddin S, Al-Kuraya KS.

J Clin Endocrinol Metab. 2008 Feb;93(2):611-8. Epub 2007 Nov 13.

PMID:
18000091
13.

Profiling of Vascular Endothelial Growth Factor Receptor Heterogeneity Identifies Protein Expression-defined Subclasses of Human Non-small Cell Lung Carcinoma.

Holzer TR, Fulford AD, Reising LO, Nedderman DM, Zhang X, Benjamin LE, Schade AE, Nasir A.

Anticancer Res. 2016 Jul;36(7):3277-88.

PMID:
27354584
14.

Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines.

Piscazzi A, Costantino E, Maddalena F, Natalicchio MI, Gerardi AM, Antonetti R, Cignarelli M, Landriscina M.

J Clin Endocrinol Metab. 2012 Jun;97(6):E898-906. doi: 10.1210/jc.2011-3269. Epub 2012 Mar 22.

PMID:
22442268
15.

A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment.

Cabanillas ME, Schlumberger M, Jarzab B, Martins RG, Pacini F, Robinson B, McCaffrey JC, Shah MH, Bodenner DL, Topliss D, Andresen C, O'Brien JP, Ren M, Funahashi Y, Allison R, Elisei R, Newbold K, Licitra LF, Sherman SI, Ball DW.

Cancer. 2015 Aug 15;121(16):2749-56. doi: 10.1002/cncr.29395. Epub 2015 Apr 24.

16.
17.

Evaluation of epigenetic inactivation of vascular endothelial growth factor receptors in head and neck squamous cell carcinoma.

Misawa Y, Misawa K, Kawasaki H, Imai A, Mochizuki D, Ishikawa R, Endo S, Mima M, Kanazawa T, Iwashita T, Mineta H.

Tumour Biol. 2017 Jul;39(7):1010428317711657. doi: 10.1177/1010428317711657.

PMID:
28718364
18.

Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models.

Spoerke JM, O'Brien C, Huw L, Koeppen H, Fridlyand J, Brachmann RK, Haverty PM, Pandita A, Mohan S, Sampath D, Friedman LS, Ross L, Hampton GM, Amler LC, Shames DS, Lackner MR.

Clin Cancer Res. 2012 Dec 15;18(24):6771-83. doi: 10.1158/1078-0432.CCR-12-2347. Epub 2012 Nov 7.

19.

Cell-free DNA as a molecular tool for monitoring disease progression and response to therapy in breast cancer patients.

Liang DH, Ensor JE, Liu ZB, Patel A, Patel TA, Chang JC, Rodriguez AA.

Breast Cancer Res Treat. 2016 Jan;155(1):139-49. doi: 10.1007/s10549-015-3635-5. Epub 2015 Dec 14.

PMID:
26667234
20.

High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors.

Wang Y, Hou P, Yu H, Wang W, Ji M, Zhao S, Yan S, Sun X, Liu D, Shi B, Zhu G, Condouris S, Xing M.

J Clin Endocrinol Metab. 2007 Jun;92(6):2387-90. Epub 2007 Apr 10.

PMID:
17426084

Supplemental Content

Support Center