Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Disturbed neuronal ER-Golgi sorting of unassembled glycine receptors suggests altered subcellular processing is a cause of human hyperekplexia.

Schaefer N, Kluck CJ, Price KL, Meiselbach H, Vornberger N, Schwarzinger S, Hartmann S, Langlhofer G, Schulz S, Schlegel N, Brockmann K, Lynch B, Becker CM, Lummis SC, Villmann C.

J Neurosci. 2015 Jan 7;35(1):422-37. doi: 10.1523/JNEUROSCI.1509-14.2015.

2.

Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease.

Schaefer N, Berger A, van Brederode J, Zheng F, Zhang Y, Leacock S, Littau L, Jablonka S, Malhotra S, Topf M, Winter F, Davydova D, Lynch JW, Paige CJ, Alzheimer C, Harvey RJ, Villmann C.

J Neurosci. 2017 Aug 16;37(33):7948-7961. doi: 10.1523/JNEUROSCI.0009-17.2017. Epub 2017 Jul 19.

3.

Molecular basis of the dominant negative effect of a glycine transporter 2 mutation associated with hyperekplexia.

Arribas-González E, de Juan-Sanz J, Aragón C, López-Corcuera B.

J Biol Chem. 2015 Jan 23;290(4):2150-65. doi: 10.1074/jbc.M114.587055. Epub 2014 Dec 5.

4.

Disturbances of Ligand Potency and Enhanced Degradation of the Human Glycine Receptor at Affected Positions G160 and T162 Originally Identified in Patients Suffering from Hyperekplexia.

Atak S, Langlhofer G, Schaefer N, Kessler D, Meiselbach H, Delto C, Schindelin H, Villmann C.

Front Mol Neurosci. 2015 Dec 22;8:79. doi: 10.3389/fnmol.2015.00079. eCollection 2015.

5.

The importance of TM3-4 loop subdomains for functional reconstitution of glycine receptors by independent domains.

Unterer B, Becker CM, Villmann C.

J Biol Chem. 2012 Nov 9;287(46):39205-15. doi: 10.1074/jbc.M112.376053. Epub 2012 Sep 20.

6.
7.

Propofol modulation of α1 glycine receptors does not require a structural transition at adjacent subunits that is crucial to agonist-induced activation.

Lynagh T, Kunz A, Laube B.

ACS Chem Neurosci. 2013 Nov 20;4(11):1469-78. doi: 10.1021/cn400134p. Epub 2013 Sep 17.

8.

Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation.

Wilkins ME, Caley A, Gielen MC, Harvey RJ, Smart TG.

J Physiol. 2016 Jul 1;594(13):3589-607. doi: 10.1113/JP272122. Epub 2016 May 10.

9.

Recessive hyperekplexia mutations of the glycine receptor alpha1 subunit affect cell surface integration and stability.

Villmann C, Oertel J, Melzer N, Becker CM.

J Neurochem. 2009 Nov;111(3):837-47. doi: 10.1111/j.1471-4159.2009.06372.x. Epub 2009 Sep 1.

10.

The novel hyperekplexia allele GLRA1(S267N) affects the ethanol site of the glycine receptor.

Becker K, Breitinger HG, Humeny A, Meinck HM, Dietz B, Aksu F, Becker CM.

Eur J Hum Genet. 2008 Feb;16(2):223-8. Epub 2007 Nov 28.

11.

Molecular dynamics simulation links conformation of a pore-flanking region to hyperekplexia-related dysfunction of the inhibitory glycine receptor.

Breitinger HG, Lanig H, Vohwinkel C, Grewer C, Breitinger U, Clark T, Becker CM.

Chem Biol. 2004 Oct;11(10):1339-50.

12.

Evidence for α-helices in the large intracellular domain mediating modulation of the α1-glycine receptor by ethanol and Gβγ.

Burgos CF, Castro PA, Mariqueo T, Bunster M, Guzmán L, Aguayo LG.

J Pharmacol Exp Ther. 2015 Jan;352(1):148-55. doi: 10.1124/jpet.114.217976. Epub 2014 Oct 22. Erratum in: J Pharmacol Exp Ther. 2015 Feb;352(2):325.

13.

Analysis of hyperekplexia mutations identifies transmembrane domain rearrangements that mediate glycine receptor activation.

Bode A, Lynch JW.

J Biol Chem. 2013 Nov 22;288(47):33760-71. doi: 10.1074/jbc.M113.513804. Epub 2013 Oct 4.

14.

The GLRA1 missense mutation W170S associates lack of Zn2+ potentiation with human hyperekplexia.

Zhou N, Wang CH, Zhang S, Wu DC.

J Neurosci. 2013 Nov 6;33(45):17675-81. doi: 10.1523/JNEUROSCI.3240-13.2013.

15.

A GLRA1 null mutation in recessive hyperekplexia challenges the functional role of glycine receptors.

Brune W, Weber RG, Saul B, von Knebel Doeberitz M, Grond-Ginsbach C, Kellerman K, Meinck HM, Becker CM.

Am J Hum Genet. 1996 May;58(5):989-97.

16.

New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms.

Bode A, Wood SE, Mullins JG, Keramidas A, Cushion TD, Thomas RH, Pickrell WO, Drew CJ, Masri A, Jones EA, Vassallo G, Born AP, Alehan F, Aharoni S, Bannasch G, Bartsch M, Kara B, Krause A, Karam EG, Matta S, Jain V, Mandel H, Freilinger M, Graham GE, Hobson E, Chatfield S, Vincent-Delorme C, Rahme JE, Afawi Z, Berkovic SF, Howell OW, Vanbellinghen JF, Rees MI, Chung SK, Lynch JW.

J Biol Chem. 2013 Nov 22;288(47):33745-59. doi: 10.1074/jbc.M113.509240. Epub 2013 Oct 9.

17.

The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site.

Safar F, Hurdiss E, Erotocritou M, Greiner T, Lape R, Irvine MW, Fang G, Jane D, Yu R, Dämgen MA, Biggin PC, Sivilotti LG.

J Biol Chem. 2017 Mar 24;292(12):5031-5042. doi: 10.1074/jbc.M116.767616. Epub 2017 Feb 7.

18.

Glycine receptor mouse mutants: model systems for human hyperekplexia.

Schaefer N, Langlhofer G, Kluck CJ, Villmann C.

Br J Pharmacol. 2013 Nov;170(5):933-52. doi: 10.1111/bph.12335. Review.

19.

Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease.

Xiong W, Chen SR, He L, Cheng K, Zhao YL, Chen H, Li DP, Homanics GE, Peever J, Rice KC, Wu LG, Pan HL, Zhang L.

Nat Neurosci. 2014 Feb;17(2):232-9. doi: 10.1038/nn.3615. Epub 2014 Jan 5.

20.

Opposing effects of molecular volume and charge at the hyperekplexia site alpha 1(P250) govern glycine receptor activation and desensitization.

Breitinger HG, Villmann C, Becker K, Becker CM.

J Biol Chem. 2001 Aug 10;276(32):29657-63. Epub 2001 Jun 6.

Supplemental Content

Support Center