Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.

Trachtenberg JE, Mountziaris PM, Miller JS, Wettergreen M, Kasper FK, Mikos AG.

J Biomed Mater Res A. 2014 Dec;102(12):4326-35.

2.

Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.

Chen F, Hochleitner G, Woodfield T, Groll J, Dalton PD, Amsden BG.

Biomacromolecules. 2016 Jan 11;17(1):208-14. doi: 10.1021/acs.biomac.5b01316. Epub 2015 Dec 8.

PMID:
26620885
3.

Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures.

Zhou Z, Cunningham E, Lennon A, McCarthy HO, Buchanan F, Clarke SA, Dunne N.

J Mech Behav Biomed Mater. 2017 Jun;70:68-83. doi: 10.1016/j.jmbbm.2016.04.035. Epub 2016 May 4.

PMID:
27233445
4.

The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.

Domingos M, Intranuovo F, Russo T, De Santis R, Gloria A, Ambrosio L, Ciurana J, Bartolo P.

Biofabrication. 2013 Dec;5(4):045004. doi: 10.1088/1758-5082/5/4/045004. Epub 2013 Nov 6.

PMID:
24192056
5.

Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.

He J, Xia P, Li D.

Biofabrication. 2016 Aug 4;8(3):035008. doi: 10.1088/1758-5090/8/3/035008.

PMID:
27490377
6.

Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

Mohanty S, Sanger K, Heiskanen A, Trifol J, Szabo P, Dufva M, Emnéus J, Wolff A.

Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:180-9. doi: 10.1016/j.msec.2015.12.032. Epub 2015 Dec 19.

PMID:
26838839
7.

Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.

Zhou Z, Buchanan F, Mitchell C, Dunne N.

Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:1-10. doi: 10.1016/j.msec.2014.01.027. Epub 2014 Jan 22.

PMID:
24656346
8.

Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.

Olubamiji AD, Izadifar Z, Si JL, Cooper DM, Eames BF, Chen DX.

Biofabrication. 2016 Jun 22;8(2):025020. doi: 10.1088/1758-5090/8/2/025020.

PMID:
27328736
9.

Porous poly(ε-caprolactone) scaffolds for load-bearing tissue regeneration: solventless fabrication and characterization.

Allaf RM, Rivero IV, Abidi N, Ivanov IN.

J Biomed Mater Res B Appl Biomater. 2013 Aug;101(6):1050-60. doi: 10.1002/jbm.b.32915. Epub 2013 Apr 4.

PMID:
23559444
10.

[Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique].

Yu X, Fang J, Luo J, Yang X, He D, Gou Z, Dai X.

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2016 Mar;45(2):126-31. Chinese.

PMID:
27273985
11.

Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.

Ribeiro JFM, Oliveira SM, Alves JL, Pedro AJ, Reis RL, Fernandes EM, Mano JF.

Biofabrication. 2017 May 11;9(2):025015. doi: 10.1088/1758-5090/aa698e.

PMID:
28349900
12.

Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.

Li JL, Cai YL, Guo YL, Fuh JY, Sun J, Hong GS, Lam RN, Wong YS, Wang W, Tay BY, Thian ES.

J Biomed Mater Res B Appl Biomater. 2014 May;102(4):651-8. doi: 10.1002/jbm.b.33043. Epub 2013 Oct 24.

PMID:
24155124
13.

Fabrication of biomimetic bone grafts with multi-material 3D printing.

Sears N, Dhavalikar P, Whitely M, Cosgriff-Hernandez E.

Biofabrication. 2017 May 22;9(2):025020. doi: 10.1088/1758-5090/aa7077.

PMID:
28530207
14.

Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

Park JH, Jung JW, Kang HW, Cho DW.

Biofabrication. 2014 Jun;6(2):025003. doi: 10.1088/1758-5082/6/2/025003. Epub 2014 Mar 21.

PMID:
24658060
15.

Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications.

Hung KC, Tseng CS, Hsu SH.

Adv Healthc Mater. 2014 Oct;3(10):1578-87. doi: 10.1002/adhm.201400018. Epub 2014 Apr 14.

PMID:
24729580
16.

Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling.

Korpela J, Kokkari A, Korhonen H, Malin M, Närhi T, Seppälä J.

J Biomed Mater Res B Appl Biomater. 2013 May;101(4):610-9. doi: 10.1002/jbm.b.32863. Epub 2012 Dec 20.

PMID:
23281260
17.

Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications.

Ko J, Mohtaram NK, Ahmed F, Montgomery A, Carlson M, Lee PC, Willerth SM, Jun MB.

J Biomater Sci Polym Ed. 2014;25(1):1-17. doi: 10.1080/09205063.2013.830913. Epub 2013 Sep 2.

PMID:
23998440
18.

Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X.

J Biomed Mater Res A. 2010 May;93(2):753-62. doi: 10.1002/jbm.a.32591.

PMID:
19642211
19.

Bioprinting and Differentiation of Stem Cells.

Irvine SA, Venkatraman SS.

Molecules. 2016 Sep 8;21(9). pii: E1188. doi: 10.3390/molecules21091188. Review.

20.

Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

Asadi-Eydivand M, Solati-Hashjin M, Shafiei SS, Mohammadi S, Hafezi M, Abu Osman NA.

PLoS One. 2016 Mar 21;11(3):e0151216. doi: 10.1371/journal.pone.0151216. eCollection 2016.

Supplemental Content

Support Center