Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.

Trachtenberg JE, Mountziaris PM, Miller JS, Wettergreen M, Kasper FK, Mikos AG.

J Biomed Mater Res A. 2014 Dec;102(12):4326-35.

2.

Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.

Chen F, Hochleitner G, Woodfield T, Groll J, Dalton PD, Amsden BG.

Biomacromolecules. 2016 Jan 11;17(1):208-14. doi: 10.1021/acs.biomac.5b01316. Epub 2015 Dec 8.

PMID:
26620885
3.

Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.

Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW, Fisher JP, Mikos AG.

Acta Biomater. 2019 May;90:37-48. doi: 10.1016/j.actbio.2019.03.041. Epub 2019 Mar 21.

PMID:
30905862
4.

Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures.

Zhou Z, Cunningham E, Lennon A, McCarthy HO, Buchanan F, Clarke SA, Dunne N.

J Mech Behav Biomed Mater. 2017 Jun;70:68-83. doi: 10.1016/j.jmbbm.2016.04.035. Epub 2016 May 4.

PMID:
27233445
5.

Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.

He J, Xia P, Li D.

Biofabrication. 2016 Aug 4;8(3):035008. doi: 10.1088/1758-5090/8/3/035008.

PMID:
27490377
6.

In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.

Jonnalagadda JB, Rivero IV, Dertien JS.

J Biomater Sci Polym Ed. 2015;26(7):401-19. doi: 10.1080/09205063.2015.1015864. Epub 2015 Mar 12.

PMID:
25671317
7.

The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.

Domingos M, Intranuovo F, Russo T, De Santis R, Gloria A, Ambrosio L, Ciurana J, Bartolo P.

Biofabrication. 2013 Dec;5(4):045004. doi: 10.1088/1758-5082/5/4/045004. Epub 2013 Nov 6.

PMID:
24192056
8.

Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption.

Zhou Z, Cunningham E, Lennon A, McCarthy HO, Buchanan F, Dunne N.

Mater Sci Eng C Mater Biol Appl. 2018 Dec 1;93:975-986. doi: 10.1016/j.msec.2018.08.048. Epub 2018 Aug 23.

PMID:
30274136
9.

Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

Mohanty S, Sanger K, Heiskanen A, Trifol J, Szabo P, Dufva M, Emnéus J, Wolff A.

Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:180-9. doi: 10.1016/j.msec.2015.12.032. Epub 2015 Dec 19.

PMID:
26838839
10.

Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.

Ribeiro JFM, Oliveira SM, Alves JL, Pedro AJ, Reis RL, Fernandes EM, Mano JF.

Biofabrication. 2017 May 11;9(2):025015. doi: 10.1088/1758-5090/aa698e.

PMID:
28349900
11.

Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.

Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG.

J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.

12.

Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.

Olubamiji AD, Izadifar Z, Si JL, Cooper DM, Eames BF, Chen DX.

Biofabrication. 2016 Jun 22;8(2):025020. doi: 10.1088/1758-5090/8/2/025020.

PMID:
27328736
13.

Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.

Zhang X, Du X, Li D, Ao R, Yu B, Yu B.

J Biomater Sci Polym Ed. 2018 Oct;29(14):1686-1700. doi: 10.1080/09205063.2018.1475096. Epub 2018 Sep 25.

PMID:
29768120
14.

Fabrication of biomimetic bone grafts with multi-material 3D printing.

Sears N, Dhavalikar P, Whitely M, Cosgriff-Hernandez E.

Biofabrication. 2017 May 22;9(2):025020. doi: 10.1088/1758-5090/aa7077.

PMID:
28530207
15.

Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.

Zhou Z, Buchanan F, Mitchell C, Dunne N.

Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:1-10. doi: 10.1016/j.msec.2014.01.027. Epub 2014 Jan 22.

PMID:
24656346
16.

Porous poly(ε-caprolactone) scaffolds for load-bearing tissue regeneration: solventless fabrication and characterization.

Allaf RM, Rivero IV, Abidi N, Ivanov IN.

J Biomed Mater Res B Appl Biomater. 2013 Aug;101(6):1050-60. doi: 10.1002/jbm.b.32915. Epub 2013 Apr 4.

PMID:
23559444
17.

[Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].

Lian Q, Zhuang P, Li C, Jin Z, Li D.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014 Mar;28(3):309-13. Chinese.

PMID:
24844010
18.

Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering.

Saska S, Pires LC, Cominotte MA, Mendes LS, de Oliveira MF, Maia IA, da Silva JVL, Ribeiro SJL, Cirelli JA.

Mater Sci Eng C Mater Biol Appl. 2018 Aug 1;89:265-273. doi: 10.1016/j.msec.2018.04.016. Epub 2018 Apr 12.

PMID:
29752098
19.

Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.

Fairag R, Rosenzweig DH, Ramirez-Garcialuna JL, Weber MH, Haglund L.

ACS Appl Mater Interfaces. 2019 May 1;11(17):15306-15315. doi: 10.1021/acsami.9b02502. Epub 2019 Apr 22.

PMID:
30973708
20.

Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering.

Jonnalagadda JB, Rivero IV.

J Mech Behav Biomed Mater. 2014 Dec;40:33-41. doi: 10.1016/j.jmbbm.2014.08.009. Epub 2014 Aug 19.

PMID:
25194523

Supplemental Content

Support Center