Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 69

1.

Study of microRNA in diabetic nephropathy: isolation, quantification and biological function.

Kantharidis P, Hagiwara S, Brennan E, McClelland AD.

Nephrology (Carlton). 2015 Mar;20(3):132-9. doi: 10.1111/nep.12374. Review.

PMID:
25487691
2.

Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice.

Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, Wang NS.

J Nephrol. 2012 Jul-Aug;25(4):566-76. doi: 10.5301/jn.5000034.

PMID:
21983986
3.

MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy.

Long J, Wang Y, Wang W, Chang BH, Danesh FR.

J Biol Chem. 2011 Apr 1;286(13):11837-48. doi: 10.1074/jbc.M110.194969. Epub 2011 Feb 10.

4.

Proteasome subunit-α type-6 protein is post-transcriptionally repressed by the microRNA-4490 in diabetic nephropathy.

Feng Y, Jin MY, Liu DW, Wei L.

Biosci Rep. 2018 Oct 31;38(5). pii: BSR20180815. doi: 10.1042/BSR20180815. Print 2018 Oct 31. Erratum in: Biosci Rep. 2019 Jan 11;39(1):.

5.
6.

Where are we in diabetic nephropathy: microRNAs and biomarkers?

McClelland A, Hagiwara S, Kantharidis P.

Curr Opin Nephrol Hypertens. 2014 Jan;23(1):80-6. doi: 10.1097/01.mnh.0000437612.50040.ae. Review.

PMID:
24247820
7.

miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression.

Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, Kantharidis P.

Diabetes. 2011 Jan;60(1):280-7. doi: 10.2337/db10-0892. Epub 2010 Oct 15.

8.

miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy.

Wang JY, Gao YB, Zhang N, Zou DW, Wang P, Zhu ZY, Li JY, Zhou SN, Wang SC, Wang YY, Yang JK.

Mol Cell Endocrinol. 2014 Jul 5;392(1-2):163-72. doi: 10.1016/j.mce.2014.05.018. Epub 2014 Jun 2.

PMID:
24887517
9.

MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy.

Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, Zha H, Yao L, He X, Peng H.

FEBS Lett. 2012 Jan 2;586(1):20-6. doi: 10.1016/j.febslet.2011.07.042. Epub 2011 Aug 4.

10.

Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy.

Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D.

J Am Soc Nephrol. 2010 Mar;21(3):438-47. doi: 10.1681/ASN.2009050530. Epub 2010 Jan 7.

11.

The pathogenesis of diabetic nephropathy: focus on microRNAs and proteomics.

Conserva F, Pontrelli P, Accetturo M, Gesualdo L.

J Nephrol. 2013 Sep-Oct;26(5):811-20. doi: 10.5301/jn.5000262. Epub 2013 Mar 27. Review.

PMID:
23543479
12.

MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT.

Srivastava SP, Koya D, Kanasaki K.

Biomed Res Int. 2013;2013:125469. doi: 10.1155/2013/125469. Epub 2013 Sep 8. Review.

13.

MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors.

Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R.

Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3432-7. Epub 2007 Feb 20.

14.

Riboregulators in kidney development and function.

Karolina DS, Wintour EM, Bertram J, Jeyaseelan K.

Biochimie. 2010 Mar;92(3):217-25. doi: 10.1016/j.biochi.2009.12.008. Epub 2009 Dec 31. Review.

PMID:
20045037
15.

MicroRNAs: the underlying mediators of pathogenetic processes in vascular complications of diabetes.

Ruiz MA, Chakrabarti S.

Can J Diabetes. 2013 Oct;37(5):339-44. doi: 10.1016/j.jcjd.2013.07.003. Review.

PMID:
24500562
16.

Post-transcriptional regulation of Transforming Growth Factor Beta-1 by microRNA-744.

Martin J, Jenkins RH, Bennagi R, Krupa A, Phillips AO, Bowen T, Fraser DJ.

PLoS One. 2011;6(10):e25044. doi: 10.1371/journal.pone.0025044. Epub 2011 Oct 4.

17.

MicroRNA regulation of the synaptic plasticity-related gene Arc.

Wibrand K, Pai B, Siripornmongcolchai T, Bittins M, Berentsen B, Ofte ML, Weigel A, Skaftnesmo KO, Bramham CR.

PLoS One. 2012;7(7):e41688. doi: 10.1371/journal.pone.0041688. Epub 2012 Jul 26.

18.

Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1.

Peng R, Liu H, Peng H, Zhou J, Zha H, Chen X, Zhang L, Sun Y, Yin P, Wen L, Wu T, Zhang Z.

Gene. 2015 Oct 1;570(1):57-63. doi: 10.1016/j.gene.2015.05.073. Epub 2015 Jun 4.

PMID:
26049093
19.

Role of microRNAs in kidney homeostasis and disease.

Chandrasekaran K, Karolina DS, Sepramaniam S, Armugam A, Wintour EM, Bertram JF, Jeyaseelan K.

Kidney Int. 2012 Apr;81(7):617-27. doi: 10.1038/ki.2011.448. Epub 2012 Jan 11. Review.

20.

The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression.

Alvarez ML, Distefano JK.

Diabetes Res Clin Pract. 2013 Jan;99(1):1-11. doi: 10.1016/j.diabres.2012.10.010. Epub 2012 Oct 25. Review.

PMID:
23102915

Supplemental Content

Support Center