Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 386

1.

Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans.

Nakamura Y, Sato K, Yamamoto H, Matsumura K, Matsumoto I, Nomura T, Miyasaka T, Ishii K, Kanno E, Tachi M, Yamasaki S, Saijo S, Iwakura Y, Kawakami K.

Infect Immun. 2015 Feb;83(2):671-81. doi: 10.1128/IAI.02835-14. Epub 2014 Nov 24.

2.

Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection.

Guillot L, Carroll SF, Homer R, Qureshi ST.

Infect Immun. 2008 Oct;76(10):4745-56. doi: 10.1128/IAI.00341-08. Epub 2008 Aug 4.

3.

Dectin-2 regulates the effector phase of house dust mite-elicited pulmonary inflammation independently from its role in sensitization.

Parsons MW, Li L, Wallace AM, Lee MJ, Katz HR, Fernandez JM, Saijo S, Iwakura Y, Austen KF, Kanaoka Y, Barrett NA.

J Immunol. 2014 Feb 15;192(4):1361-71. doi: 10.4049/jimmunol.1301809. Epub 2014 Jan 22.

4.

Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production.

Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ.

Infect Immun. 2014 Mar;82(3):937-48. doi: 10.1128/IAI.01477-13. Epub 2013 Dec 9.

5.

Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen, Cryptococcus neoformans.

Nakamura K, Miyagi K, Koguchi Y, Kinjo Y, Uezu K, Kinjo T, Akamine M, Fujita J, Kawamura I, Mitsuyama M, Adachi Y, Ohno N, Takeda K, Akira S, Miyazato A, Kaku M, Kawakami K.

FEMS Immunol Med Microbiol. 2006 Jun;47(1):148-54.

6.

Distinct roles for IL-4 and IL-10 in regulating T2 immunity during allergic bronchopulmonary mycosis.

Hernandez Y, Arora S, Erb-Downward JR, McDonald RA, Toews GB, Huffnagle GB.

J Immunol. 2005 Jan 15;174(2):1027-36.

7.

Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection.

Jain AV, Zhang Y, Fields WB, McNamara DA, Choe MY, Chen GH, Erb-Downward J, Osterholzer JJ, Toews GB, Huffnagle GB, Olszewski MA.

Infect Immun. 2009 Dec;77(12):5389-99. doi: 10.1128/IAI.00809-09. Epub 2009 Sep 14.

8.

Both Th1 and Th2 cytokines affect the ability of monoclonal antibodies to protect mice against Cryptococcus neoformans.

Beenhouwer DO, Shapiro S, Feldmesser M, Casadevall A, Scharff MD.

Infect Immun. 2001 Oct;69(10):6445-55.

10.

IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans.

Müller U, Stenzel W, Köhler G, Werner C, Polte T, Hansen G, Schütze N, Straubinger RK, Blessing M, McKenzie AN, Brombacher F, Alber G.

J Immunol. 2007 Oct 15;179(8):5367-77.

11.

STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice.

Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Wormley FL Jr.

J Immunol. 2014 Oct 15;193(8):4060-71. doi: 10.4049/jimmunol.1400318. Epub 2014 Sep 8.

12.

Dectin-1 is required for resistance to coccidioidomycosis in mice.

Viriyakosol S, Jimenez Mdel P, Gurney MA, Ashbaugh ME, Fierer J.

MBio. 2013 Feb 5;4(1):e00597-12. doi: 10.1128/mBio.00597-12.

13.
14.

Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans.

Arora S, Olszewski MA, Tsang TM, McDonald RA, Toews GB, Huffnagle GB.

Infect Immun. 2011 May;79(5):1915-26. doi: 10.1128/IAI.01270-10. Epub 2011 Mar 7.

15.

Dectin-2-dependent host defense in mice infected with serotype 3 Streptococcus pneumoniae.

Akahori Y, Miyasaka T, Toyama M, Matsumoto I, Miyahara A, Zong T, Ishii K, Kinjo Y, Miyazaki Y, Saijo S, Iwakura Y, Kawakami K.

BMC Immunol. 2016 Jan 5;17:1. doi: 10.1186/s12865-015-0139-3.

16.

Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis.

Mednick AJ, Feldmesser M, Rivera J, Casadevall A.

Eur J Immunol. 2003 Jun;33(6):1744-53.

17.

Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis.

Wozniak KL, Ravi S, Macias S, Young ML, Olszewski MA, Steele C, Wormley FL.

PLoS One. 2009 Sep 3;4(9):e6854. doi: 10.1371/journal.pone.0006854.

18.

In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis.

Wozniak KL, Vyas JM, Levitz SM.

Infect Immun. 2006 Jul;74(7):3817-24.

19.

Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection.

Xu J, Eastman AJ, Flaczyk A, Neal LM, Zhao G, Carolan J, Malachowski AN, Stolberg VR, Yosri M, Chensue SW, Curtis JL, Osterholzer JJ, Olszewski MA.

MBio. 2016 Jul 12;7(4). pii: e00510-16. doi: 10.1128/mBio.00510-16. Erratum in: MBio. 2018 May 29;9(3):.

20.

Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans.

Yamamoto H, Nakamura Y, Sato K, Takahashi Y, Nomura T, Miyasaka T, Ishii K, Hara H, Yamamoto N, Kanno E, Iwakura Y, Kawakami K.

Infect Immun. 2014 Apr;82(4):1606-15. doi: 10.1128/IAI.01089-13. Epub 2014 Jan 27.

Supplemental Content

Support Center