Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Subcutaneous administration of D-luciferin is an effective alternative to intraperitoneal injection in bioluminescence imaging of xenograft tumors in nude mice.

Khalil AA, Jameson MJ, Broaddus WC, Chung TD, Golding SE, Dever SM, Rosenberg E, Valerie K.

ISRN Mol Imaging. 2013;2013. pii: 689279.

2.

Comparison of subcutaneous and intraperitoneal injection of D-luciferin for in vivo bioluminescence imaging.

Inoue Y, Kiryu S, Izawa K, Watanabe M, Tojo A, Ohtomo K.

Eur J Nucl Med Mol Imaging. 2009 May;36(5):771-9. doi: 10.1007/s00259-008-1022-8. Epub 2008 Dec 19.

PMID:
19096841
3.

Optimizing live-animal bioluminescence imaging prediction of tumor burden in human prostate cancer xenograft models in SCID-NSG mice.

Kim S, Zhang Y, Tang S, Qin C, Karelia D, Sharma A, Jiang C, Lu J.

Prostate. 2019 Jun;79(9):949-960. doi: 10.1002/pros.23802. Epub 2019 Apr 8.

PMID:
30958914
4.

Quantitative assessment of human uterine fibroid xenograft using sequential in vivo bioluminescence imaging.

Pan Y, Xiao T, Zhou Y, Chai Z, Xu Z, Dai M, Chen X, Suo G, Tao D.

Am J Transl Res. 2019 Apr 15;11(4):2359-2369. eCollection 2019.

5.

Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission.

Keyaerts M, Verschueren J, Bos TJ, Tchouate-Gainkam LO, Peleman C, Breckpot K, Vanhove C, Caveliers V, Bossuyt A, Lahoutte T.

Eur J Nucl Med Mol Imaging. 2008 May;35(5):999-1007. doi: 10.1007/s00259-007-0664-2. Epub 2008 Jan 4.

PMID:
18180921
6.

A synthetic luciferin improves in vivo bioluminescence imaging of gene expression in cardiovascular brain regions.

Simonyan H, Hurr C, Young CN.

Physiol Genomics. 2016 Oct 1;48(10):762-770. doi: 10.1152/physiolgenomics.00055.2016. Epub 2016 Sep 9.

7.

Continuous delivery of D-luciferin by implanted micro-osmotic pumps enables true real-time bioluminescence imaging of luciferase activity in vivo.

Gross S, Abraham U, Prior JL, Herzog ED, Piwnica-Worms D.

Mol Imaging. 2007 Mar-Apr;6(2):121-30.

PMID:
17445506
8.
9.

Bioluminescent animal models of human breast cancer for tumor biomass evaluation and metastasis detection.

Shan L, Wang S, Korotcov A, Sridhar R, Wang PC.

Ethn Dis. 2008 Spring;18(2 Suppl 2):S2-65-9.

PMID:
18646323
10.

Timing of imaging after d-luciferin injection affects the longitudinal assessment of tumor growth using in vivo bioluminescence imaging.

Inoue Y, Kiryu S, Watanabe M, Tojo A, Ohtomo K.

Int J Biomed Imaging. 2010;2010:471408. doi: 10.1155/2010/471408. Epub 2010 Jul 5.

11.

The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts.

Khalil AA, Jameson MJ, Broaddus WC, Lin PS, Dever SM, Golding SE, Rosenberg E, Valerie K, Chung TD.

Int J Mol Imaging. 2013;2013:287697. doi: 10.1155/2013/287697. Epub 2013 Jul 7.

12.

Influence of bioluminescence imaging dynamics by D-luciferin uptake and efflux mechanisms.

Zhang Y, Pullambhatla M, Laterra J, Pomper MG.

Mol Imaging. 2012 Nov-Dec;11(6):499-506.

13.

Uptake kinetics and biodistribution of 14C-D-luciferin--a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging.

Berger F, Paulmurugan R, Bhaumik S, Gambhir SS.

Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2275-85. doi: 10.1007/s00259-008-0870-6. Epub 2008 Jul 26.

14.

Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system.

Kheirolomoom A, Kruse DE, Qin S, Watson KE, Lai CY, Young LJ, Cardiff RD, Ferrara KW.

J Control Release. 2010 Jan 25;141(2):128-36. doi: 10.1016/j.jconrel.2009.08.029. Epub 2009 Sep 11.

15.

Imaging gene expression in live transgenic mice after providing luciferin in drinking water.

Hiler DJ, Greenwald ML, Geusz ME.

Photochem Photobiol Sci. 2006 Nov;5(11):1082-5. Epub 2006 Aug 25.

PMID:
17077906
16.

A synthetic luciferin improves bioluminescence imaging in live mice.

Evans MS, Chaurette JP, Adams ST Jr, Reddy GR, Paley MA, Aronin N, Prescher JA, Miller SC.

Nat Methods. 2014 Apr;11(4):393-5. doi: 10.1038/nmeth.2839. Epub 2014 Feb 9. Erratum in: Nat Methods. 2014 Apr;11(4):395.

17.

A novel model of intracranial meningioma in mice using luciferase-expressing meningioma cells. Laboratory investigation.

Ragel BT, Elam IL, Gillespie DL, Flynn JR, Kelly DA, Mabey D, Feng H, Couldwell WT, Jensen RL.

J Neurosurg. 2008 Feb;108(2):304-10. doi: 10.3171/JNS/2008/108/2/0304.

PMID:
18240927
18.

The Drug Excipient Cyclodextrin Interacts With d-Luciferin and Interferes With Bioluminescence Imaging.

Kumar JS, Miller Jenkins LM, Gottesman MM, Hall MD.

Mol Imaging. 2016 Jan 27;15. pii: 1536012115625225. doi: 10.1177/1536012115625225. Print 2016.

19.

Novel in vivo imaging analysis of an inner ear drug delivery system: Drug availability in inner ear following different dose of systemic drug injections.

Kanzaki S, Watanabe K, Fujioka M, Shibata S, Nakamura M, Okano HJ, Okano H, Ogawa K.

Hear Res. 2015 Dec;330(Pt A):142-6. doi: 10.1016/j.heares.2015.09.018. Epub 2015 Oct 3.

PMID:
26435094
20.

Sustained Effect of Hyaluronic Acid in Subcutaneous Administration to the Cochlear Spiral Ganglion.

Inagaki Y, Fujioka M, Kanzaki S, Watanabe K, Oishi N, Itakura G, Yasuda A, Shibata S, Nakamura M, Okano HJ, Okano H, Ogawa K.

PLoS One. 2016 Apr 21;11(4):e0153957. doi: 10.1371/journal.pone.0153957. eCollection 2016.

Supplemental Content

Support Center