Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 281

1.

Programmable RNA recognition and cleavage by CRISPR/Cas9.

O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA.

Nature. 2014 Dec 11;516(7530):263-6. doi: 10.1038/nature13769. Epub 2014 Sep 28.

2.

DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA.

Nature. 2014 Mar 6;507(7490):62-7. doi: 10.1038/nature13011. Epub 2014 Jan 29.

3.

CRISPR-Cas9 Structures and Mechanisms.

Jiang F, Doudna JA.

Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30. Review.

PMID:
28375731
4.

The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.

Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E.

Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.

PMID:
27096362
5.

Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.

Anders C, Niewoehner O, Duerst A, Jinek M.

Nature. 2014 Sep 25;513(7519):569-73. doi: 10.1038/nature13579. Epub 2014 Jul 27.

6.

Conformational control of DNA target cleavage by CRISPR-Cas9.

Sternberg SH, LaFrance B, Kaplan M, Doudna JA.

Nature. 2015 Nov 5;527(7576):110-3. doi: 10.1038/nature15544. Epub 2015 Oct 28.

7.

Cas9 specifies functional viral targets during CRISPR-Cas adaptation.

Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA.

Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.

8.

Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.

Palermo G, Ricci CG, Fernando A, Basak R, Jinek M, Rivalta I, Batista VS, McCammon JA.

J Am Chem Soc. 2017 Nov 15;139(45):16028-16031. doi: 10.1021/jacs.7b05313. Epub 2017 Aug 7.

9.

Optimization of genome editing through CRISPR-Cas9 engineering.

Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF.

Bioengineered. 2016 Apr;7(3):166-74. doi: 10.1080/21655979.2016.1189039. Review.

10.

In Vitro Reconstitution and Crystallization of Cas9 Endonuclease Bound to a Guide RNA and a DNA Target.

Anders C, Niewoehner O, Jinek M.

Methods Enzymol. 2015;558:515-37. doi: 10.1016/bs.mie.2015.02.008. Epub 2015 Mar 12.

11.

Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.

Yang H, Patel DJ.

Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.

12.

Expanding the Biologist's Toolkit with CRISPR-Cas9.

Sternberg SH, Doudna JA.

Mol Cell. 2015 May 21;58(4):568-74. doi: 10.1016/j.molcel.2015.02.032. Review.

13.

Programmable DNA cleavage in vitro by Cas9.

Karvelis T, Gasiunas G, Siksnys V.

Biochem Soc Trans. 2013 Dec;41(6):1401-6. doi: 10.1042/BST20130164. Review.

PMID:
24256227
14.

Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

Zheng W.

Proteins. 2017 Feb;85(2):342-353. doi: 10.1002/prot.25229. Epub 2017 Jan 5.

PMID:
27936513
15.

Guide RNA functional modules direct Cas9 activity and orthogonality.

Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM, Nye CH, Haurwitz RE, Beisel CL, May AP, Barrangou R.

Mol Cell. 2014 Oct 23;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. Epub 2014 Oct 16.

16.

Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.

Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O.

Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.

17.

Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK.

Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.

18.

The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.

Lee CM, Cradick TJ, Bao G.

Mol Ther. 2016 Mar;24(3):645-54. doi: 10.1038/mt.2016.8. Epub 2016 Jan 19.

19.

Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.

Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV, Charpentier E.

Nucleic Acids Res. 2014 Feb;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub 2013 Nov 22.

20.

Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.

Karvelis T, Gasiunas G, Siksnys V.

Methods. 2017 May 15;121-122:3-8. doi: 10.1016/j.ymeth.2017.03.006. Epub 2017 Mar 24. Review.

PMID:
28344037

Supplemental Content

Support Center