Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 57

1.

The Potential of Wharton's Jelly Derived Mesenchymal Stem Cells in Treating Patients with Cystic Fibrosis.

Boruczkowski D, Gładysz D, Demkow U, Pawelec K.

Adv Exp Med Biol. 2015;833:23-9. doi: 10.1007/5584_2014_17. Review.

PMID:
25248343
2.

Application potential of mesenchymal stem cells derived from Wharton's jelly in liver tissue engineering.

Zhang L, Zhao YH, Guan Z, Ye JS, de Isla N, Stoltz JF.

Biomed Mater Eng. 2015;25(1 Suppl):137-43. doi: 10.3233/BME-141232. Review.

PMID:
25538064
3.

Isolation and characterization of canine Wharton's jelly-derived mesenchymal stem cells.

Seo MS, Park SB, Kang KS.

Cell Transplant. 2012;21(7):1493-502.

PMID:
22732242
4.

Wharton's Jelly stem cells: future clinical applications.

Taghizadeh RR, Cetrulo KJ, Cetrulo CL.

Placenta. 2011 Oct;32 Suppl 4:S311-5. doi: 10.1016/j.placenta.2011.06.010. Epub 2011 Jul 6. Review.

PMID:
21733573
5.

Wharton's jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report.

López Y, Lutjemeier B, Seshareddy K, Trevino EM, Hageman KS, Musch TI, Borgarelli M, Weiss ML.

Curr Stem Cell Res Ther. 2013 Jan;8(1):46-59.

6.

Human Wharton's jelly mesenchymal stem cell secretome display antiproliferative effect on leukemia cell line and produce additive cytotoxic effect in combination with doxorubicin.

Hendijani F, Javanmard SH, Sadeghi-aliabadi H.

Tissue Cell. 2015 Jun;47(3):229-34. doi: 10.1016/j.tice.2015.01.005. Epub 2015 Jan 31.

PMID:
25779671
7.

Wharton's jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction.

Zhang W, Liu XC, Yang L, Zhu DL, Zhang YD, Chen Y, Zhang HY.

Coron Artery Dis. 2013 Nov;24(7):549-58. doi: 10.1097/MCA.0b013e3283640f00.

PMID:
23892469
8.

Mesenchymal stem cells derived from Wharton's Jelly of the umbilical cord: biological properties and emerging clinical applications.

Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C.

Curr Stem Cell Res Ther. 2013 Mar;8(2):144-55. Review.

PMID:
23279098
9.

Immune characterization of mesenchymal stem cells in human umbilical cord Wharton's jelly and derived cartilage cells.

Liu S, Yuan M, Hou K, Zhang L, Zheng X, Zhao B, Sui X, Xu W, Lu S, Guo Q.

Cell Immunol. 2012 Jul-Aug;278(1-2):35-44. doi: 10.1016/j.cellimm.2012.06.010. Epub 2012 Jul 16.

PMID:
23121974
10.
11.

Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications.

Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan CV.

Int J Mol Sci. 2013 May 31;14(6):11692-712. doi: 10.3390/ijms140611692. Review.

12.

A comparison of Wharton's jelly and cord blood as a source of mesenchymal stem cells for diabetes cell therapy.

El-Demerdash RF, Hammad LN, Kamal MM, El Mesallamy HO.

Regen Med. 2015;10(7):841-55. doi: 10.2217/rme.15.49. Epub 2015 Nov 6.

PMID:
26541176
13.

Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton's jelly.

Zhou CH, Li ML, Qin AL, Lv SX, Wen-Tang, Zhu XY, Li LY, Dong Y, Hu CY, Hu DM, Wang SF.

Pancreas. 2013 Nov;42(8):1291-302. doi: 10.1097/MPA.0b013e318296924e.

PMID:
24152954
14.

Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro.

Peng J, Wang Y, Zhang L, Zhao B, Zhao Z, Chen J, Guo Q, Liu S, Sui X, Xu W, Lu S.

Brain Res Bull. 2011 Feb 28;84(3):235-43. doi: 10.1016/j.brainresbull.2010.12.013. Epub 2010 Dec 29.

PMID:
21194558
15.

Gene screening of Wharton's jelly derived stem cells.

Mechiche Alami S, Velard F, Draux F, Siu Paredes F, Josse J, Lemaire F, Gangloff SC, Graesslin O, Laurent-Maquin D, Kerdjoudj H.

Biomed Mater Eng. 2014;24(1 Suppl):53-61. doi: 10.3233/BME-140974.

PMID:
24928918
16.

Perspectives of employing mesenchymal stem cells from the Wharton's jelly of the umbilical cord for peripheral nerve repair.

Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL, Maurício AC.

Int Rev Neurobiol. 2013;108:79-120. doi: 10.1016/B978-0-12-410499-0.00004-6. Review.

PMID:
24083432
17.

Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells.

Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ.

Cell Tissue Res. 2011 Oct;346(1):53-64. doi: 10.1007/s00441-011-1249-8. Epub 2011 Oct 11.

PMID:
21987220
18.

Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton's jelly matrix.

Hendijani F, Sadeghi-Aliabadi H, Haghjooy Javanmard S.

Cell Tissue Bank. 2014 Dec;15(4):555-65. doi: 10.1007/s10561-014-9425-1. Epub 2014 Feb 17.

PMID:
24532125
19.

New frontiers in regenerative medicine in cardiology: the potential of Wharton's jelly mesenchymal stem cells.

Corrao S, La Rocca G, Lo Iacono M, Zummo G, Gerbino A, Farina F, Anzalone R.

Curr Stem Cell Res Ther. 2013 Jan;8(1):39-45. Review.

PMID:
23278911
20.

A preliminary evaluation of efficacy and safety of Wharton's jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus.

Liu X, Zheng P, Wang X, Dai G, Cheng H, Zhang Z, Hua R, Niu X, Shi J, An Y.

Stem Cell Res Ther. 2014 Apr 23;5(2):57. doi: 10.1186/scrt446.

Supplemental Content

Support Center