Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 200

1.

Over-expression of the bacterial phytase US417 in Arabidopsis reduces the concentration of phytic acid and reveals its involvement in the regulation of sulfate and phosphate homeostasis and signaling.

Belgaroui N, Zaidi I, Farhat A, Chouayekh H, Bouain N, Chay S, Curie C, Mari S, Masmoudi K, Davidian JC, Berthomieu P, Rouached H, Hanin M.

Plant Cell Physiol. 2014 Nov;55(11):1912-24. doi: 10.1093/pcp/pcu122. Epub 2014 Sep 16.

PMID:
25231959
2.

The secretion of the bacterial phytase PHY-US417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co-growth.

Belgaroui N, Berthomieu P, Rouached H, Hanin M.

Plant Biotechnol J. 2016 Sep;14(9):1914-24. doi: 10.1111/pbi.12552. Epub 2016 Mar 30.

3.

Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling.

Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP.

Plant Physiol. 2011 Jul;156(3):1149-63. doi: 10.1104/pp.111.174805. Epub 2011 May 31.

4.

Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase.

Bilyeu KD, Zeng P, Coello P, Zhang ZJ, Krishnan HB, Bailey A, Beuselinck PR, Polacco JC.

Plant Physiol. 2008 Feb;146(2):468-77. Epub 2007 Dec 27.

5.

The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis.

Rouached H, Secco D, Arpat B, Poirier Y.

BMC Plant Biol. 2011 Jan 24;11:19. doi: 10.1186/1471-2229-11-19.

6.

Phytase overexpression in Arabidopsis improves plant growth under osmotic stress and in combination with phosphate deficiency.

Belgaroui N, Lacombe B, Rouached H, Hanin M.

Sci Rep. 2018 Jan 18;8(1):1137. doi: 10.1038/s41598-018-19493-w.

7.

WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis.

Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF.

Plant Physiol. 2015 Apr;167(4):1579-91. doi: 10.1104/pp.114.253799. Epub 2015 Mar 2.

8.

Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways.

Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y.

Plant J. 2007 Jun;50(6):982-94. Epub 2007 Apr 25.

9.

The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation.

Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P.

New Phytol. 2012 Jul;195(2):356-71. doi: 10.1111/j.1469-8137.2012.04167.x. Epub 2012 May 11.

10.

Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment.

Gujar PD, Bhavsar KP, Khire JM.

J Sci Food Agric. 2013 Jul;93(9):2242-7. doi: 10.1002/jsfa.6032. Epub 2013 Jan 28.

PMID:
23355258
11.

Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

Wang Y, Ye X, Ding G, Xu F.

PLoS One. 2013;8(4):e60801. doi: 10.1371/journal.pone.0060801. Epub 2013 Apr 3.

12.
13.

Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation.

Cheng Y, Zhou W, El Sheery NI, Peters C, Li M, Wang X, Huang J.

Plant J. 2011 Jun;66(5):781-95. doi: 10.1111/j.1365-313X.2011.04538.x. Epub 2011 Apr 1. Erratum in: Plant J. 2011 Aug;67(4):746.

14.

Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis.

Ren Y, Liu Y, Chen H, Li G, Zhang X, Zhao J.

Plant Cell Environ. 2012 Apr;35(4):770-89. doi: 10.1111/j.1365-3040.2011.02450.x. Epub 2011 Nov 15.

15.

APSR1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability.

González-Mendoza V, Zurita-Silva A, Sánchez-Calderón L, Sánchez-Sandoval ME, Oropeza-Aburto A, Gutiérrez-Alanís D, Alatorre-Cobos F, Herrera-Estrella L.

Plant Sci. 2013 May;205-206:2-12. doi: 10.1016/j.plantsci.2012.12.015. Epub 2013 Jan 17.

PMID:
23498857
16.

Identification of phosphatin, a drug alleviating phosphate starvation responses in Arabidopsis.

Arnaud C, Clément M, Thibaud MC, Javot H, Chiarenza S, Delannoy E, Revol J, Soreau P, Balzergue S, Block MA, Maréchal E, Desnos T, Nussaume L.

Plant Physiol. 2014 Nov;166(3):1479-91. doi: 10.1104/pp.114.248112. Epub 2014 Sep 10.

17.

Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate.

Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y.

Plant J. 2012 Aug;71(3):479-91. doi: 10.1111/j.1365-313X.2012.05004.x. Epub 2012 May 25.

18.

Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants.

Li G, Yang S, Li M, Qiao Y, Wang J.

Biotechnol Lett. 2009 Aug;31(8):1297-303. doi: 10.1007/s10529-009-9992-6. Epub 2009 Apr 9.

PMID:
19357813
19.

Genetic analysis of two OsLpa1-like genes in Arabidopsis reveals that only one is required for wild-type seed phytic acid levels.

Kim SI, Tai TH.

Planta. 2010 Oct;232(5):1241-50. doi: 10.1007/s00425-010-1243-5. Epub 2010 Aug 24.

PMID:
20734061

Supplemental Content

Support Center