Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation.

Sohn CH, Park SP, Choi SH, Park SH, Kim S, Xu L, Kim SH, Hur JA, Choi J, Choi TH.

Nanomedicine. 2015 Jan;11(1):127-35. doi: 10.1016/j.nano.2014.08.003. Epub 2014 Aug 25.

PMID:
25168935
2.
3.

In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles.

Hsieh WJ, Liang CJ, Chieh JJ, Wang SH, Lai IR, Chen JH, Chang FH, Tseng WK, Yang SY, Wu CC, Chen YL.

Int J Nanomedicine. 2012;7:2833-42. doi: 10.2147/IJN.S32154. Epub 2012 Jun 7.

4.

[The expression and role of glucose transporter-1 in infantile hemangioma].

Yuan SM, Jiang HQ, Hong ZJ, Wang J, Hu XB, Ouyang TX, Xing X.

Zhonghua Zheng Xing Wai Ke Za Zhi. 2007 Mar;23(2):90-3. Chinese.

PMID:
17554865
5.

Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging.

Li J, He Y, Sun W, Luo Y, Cai H, Pan Y, Shen M, Xia J, Shi X.

Biomaterials. 2014 Apr;35(11):3666-77. doi: 10.1016/j.biomaterials.2014.01.011. Epub 2014 Jan 24.

PMID:
24462358
6.

[Construction of RGD10-NGR9 dual-targeting superparamagnetic iron oxide and its magnetic resonance imaging features in nude mice].

Wu QY, Shi JY, Zhang J, Zhang LQ, Zhao YM, Tang L, Chen Y, He XD, Liu H, Su B.

Zhonghua Zhong Liu Za Zhi. 2013 Nov;35(11):808-13. Chinese.

PMID:
24447476
7.

Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging.

Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X.

Biomaterials. 2013 Nov;34(33):8382-92. doi: 10.1016/j.biomaterials.2013.07.070. Epub 2013 Aug 7.

PMID:
23932250
8.

RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T₁-weighted MR imaging of gliomas.

Luo Y, Yang J, Yan Y, Li J, Shen M, Zhang G, Mignani S, Shi X.

Nanoscale. 2015 Sep 14;7(34):14538-46. doi: 10.1039/c5nr04003e.

PMID:
26260703
9.

Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma.

Liang J, Zhang X, Miao Y, Li J, Gan Y.

Int J Nanomedicine. 2017 Mar 14;12:2033-2044. doi: 10.2147/IJN.S128525. eCollection 2017.

10.

Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer.

Zhang H, Li J, Hu Y, Shen M, Shi X, Zhang G.

J Ovarian Res. 2016 Mar 29;9:19. doi: 10.1186/s13048-016-0230-2.

11.

Targeting Glut1-overexpressing MDA-MB-231 cells with 2-deoxy-D-g1ucose modified SPIOs.

Shan XH, Hu H, Xiong F, Gu N, Geng XD, Zhu W, Lin J, Wang YF.

Eur J Radiol. 2012 Jan;81(1):95-9. doi: 10.1016/j.ejrad.2011.03.013. Epub 2011 Mar 26.

PMID:
21440393
12.

Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging.

Yang J, Luo Y, Xu Y, Li J, Zhang Z, Wang H, Shen M, Shi X, Zhang G.

ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5420-8. doi: 10.1021/am508983n. Epub 2015 Feb 26.

PMID:
25695661
13.

Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance.

Fu G, Liu W, Li Y, Jin Y, Jiang L, Liang X, Feng S, Dai Z.

Bioconjug Chem. 2014 Sep 17;25(9):1655-63. doi: 10.1021/bc500279w. Epub 2014 Aug 15.

PMID:
25109612
14.

In vivo MR and Fluorescence Dual-modality Imaging of Atherosclerosis Characteristics in Mice Using Profilin-1 Targeted Magnetic Nanoparticles.

Wang Y, Chen J, Yang B, Qiao H, Gao L, Su T, Ma S, Zhang X, Li X, Liu G, Cao J, Chen X, Chen Y, Cao F.

Theranostics. 2016 Jan 1;6(2):272-86. doi: 10.7150/thno.13350. eCollection 2016.

15.

Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.

Ohno K, Mori C, Akashi T, Yoshida S, Tago Y, Tsujii Y, Tabata Y.

Biomacromolecules. 2013 Oct 14;14(10):3453-62. doi: 10.1021/bm400770n. Epub 2013 Sep 4.

PMID:
23957585
16.

Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice.

Zhang L, Zhou H, Belzile O, Thorpe P, Zhao D.

J Control Release. 2014 Jun 10;183:114-23. doi: 10.1016/j.jconrel.2014.03.043. Epub 2014 Apr 1.

PMID:
24698945
17.

Biofunctionalized prussian blue nanoparticles for multimodal molecular imaging applications.

Vojtech JM, Cano-Mejia J, Dumont MF, Sze RW, Fernandes R.

J Vis Exp. 2015 Apr 28;(98):e52621. doi: 10.3791/52621.

18.

In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia.

Li XX, Li KA, Qin JB, Ye KC, Yang XR, Li WM, Xie QS, Jiang ME, Zhang GX, Lu XW.

Int J Nanomedicine. 2013;8:1063-73. doi: 10.2147/IJN.S42578. Epub 2013 Mar 12.

19.

Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization.

Wagner S, Schnorr J, Ludwig A, Stangl V, Ebert M, Hamm B, Taupitz M.

Int J Nanomedicine. 2013;8:767-79. doi: 10.2147/IJN.S38702. Epub 2013 Feb 20.

20.

Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques.

Tian F, Chen G, Yi P, Zhang J, Li A, Zhang J, Zheng L, Deng Z, Shi Q, Peng R, Wang Q.

Biomaterials. 2014 Aug;35(24):6412-21. doi: 10.1016/j.biomaterials.2014.04.052. Epub 2014 May 10.

PMID:
24814428

Supplemental Content

Support Center