Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

A simple improved-throughput xylem protoplast system for studying wood formation.

Lin YC, Li W, Chen H, Li Q, Sun YH, Shi R, Lin CY, Wang JP, Chen HC, Chuang L, Qu GZ, Sederoff RR, Chiang VL.

Nat Protoc. 2014 Sep;9(9):2194-205. doi: 10.1038/nprot.2014.147. Epub 2014 Aug 21.

PMID:
25144270
2.

SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.

Lin YC, Li W, Sun YH, Kumari S, Wei H, Li Q, Tunlaya-Anukit S, Sederoff RR, Chiang VL.

Plant Cell. 2013 Nov;25(11):4324-41. doi: 10.1105/tpc.113.117697. Epub 2013 Nov 26.

3.

A robust chromatin immunoprecipitation protocol for studying transcription factor-DNA interactions and histone modifications in wood-forming tissue.

Li W, Lin YC, Li Q, Shi R, Lin CY, Chen H, Chuang L, Qu GZ, Sederoff RR, Chiang VL.

Nat Protoc. 2014 Sep;9(9):2180-93. doi: 10.1038/nprot.2014.146. Epub 2014 Aug 21.

PMID:
25144269
4.

Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.

Zhong R, McCarthy RL, Lee C, Ye ZH.

Plant Physiol. 2011 Nov;157(3):1452-68. doi: 10.1104/pp.111.181354. Epub 2011 Sep 9.

5.

Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis.

Hefer CA, Mizrachi E, Myburg AA, Douglas CJ, Mansfield SD.

New Phytol. 2015 Jun;206(4):1391-405. doi: 10.1111/nph.13277. Epub 2015 Feb 6.

6.

A NAC domain protein family contributing to the regulation of wood formation in poplar.

Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, Shi F, Ohme-Takagi M, Demura T.

Plant J. 2011 Aug;67(3):499-512. doi: 10.1111/j.1365-313X.2011.04614.x. Epub 2011 Jun 7.

7.

Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem.

Milhinhos A, Prestele J, Bollhöner B, Matos A, Vera-Sirera F, Rambla JL, Ljung K, Carbonell J, Blázquez MA, Tuominen H, Miguel CM.

Plant J. 2013 Aug;75(4):685-98. doi: 10.1111/tpj.12231. Epub 2013 Jun 13.

8.

Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays.

Guo J, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, Tuskan GA, Chen JG.

PLoS One. 2012;7(9):e44908. doi: 10.1371/journal.pone.0044908. Epub 2012 Sep 13.

9.

Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen.

Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, Brumer H, Teeri TT, Stålbrand H, Mellerowicz EJ.

Plant Physiol. 2011 Jan;155(1):399-413. doi: 10.1104/pp.110.166934. Epub 2010 Nov 5.

10.

Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood.

Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, Busse-Wicher M, Kosik O, Tanaka R, Winzéll A, Kallas Å, Leśniewska J, Berthold F, Immerzeel P, Teeri TT, Ezcurra I, Dupree P, Serimaa R, Mellerowicz EJ.

New Phytol. 2015 Jan;205(2):666-81. doi: 10.1111/nph.13099. Epub 2014 Oct 13.

11.

Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

Loziuk PL, Parker J, Li W, Lin CY, Wang JP, Li Q, Sederoff RR, Chiang VL, Muddiman DC.

J Proteome Res. 2015 Oct 2;14(10):4158-68. doi: 10.1021/acs.jproteome.5b00233. Epub 2015 Sep 1.

PMID:
26325666
12.

Overexpression of constitutively active Arabidopsis RabG3b promotes xylem development in transgenic poplars.

Kwon SI, Cho HJ, Lee JS, Jin H, Shin SJ, Kwon M, Noh EW, Park OK.

Plant Cell Environ. 2011 Dec;34(12):2212-24. doi: 10.1111/j.1365-3040.2011.02416.x. Epub 2011 Sep 28.

13.

Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus.

Wang HH, Tang RJ, Liu H, Chen HY, Liu JY, Jiang XN, Zhang HX.

Tree Physiol. 2013 Aug;33(8):878-86. doi: 10.1093/treephys/tpt058. Epub 2013 Aug 11.

PMID:
23939552
14.

Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.).

Burris KP, Dlugosz EM, Collins AG, Stewart CN Jr, Lenaghan SC.

Plant Cell Rep. 2016 Mar;35(3):693-704. doi: 10.1007/s00299-015-1913-7. Epub 2015 Dec 21.

15.
16.

Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

Zhao Y, Sun J, Xu P, Zhang R, Li L.

Plant Physiol. 2014 Feb;164(2):765-76. doi: 10.1104/pp.113.231134. Epub 2014 Jan 6.

17.

Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus.

Spicer R, Tisdale-Orr T, Talavera C.

PLoS One. 2013 Aug 15;8(8):e72499. doi: 10.1371/journal.pone.0072499. eCollection 2013.

18.

Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.

Obudulu O, Bygdell J, Sundberg B, Moritz T, Hvidsten TR, Trygg J, Wingsle G.

BMC Genomics. 2016 Feb 18;17:119. doi: 10.1186/s12864-016-2458-z.

19.

A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties.

Vahala J, Felten J, Love J, Gorzsás A, Gerber L, Lamminmäki A, Kangasjärvi J, Sundberg B.

New Phytol. 2013 Oct;200(2):511-22. doi: 10.1111/nph.12386. Epub 2013 Jul 1.

20.

Transient expression assays for quantifying signaling output.

Niu Y, Sheen J.

Methods Mol Biol. 2012;876:195-206. doi: 10.1007/978-1-61779-809-2_16.

PMID:
22576097

Supplemental Content

Support Center