Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 132

1.

The Sch9 kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum.

Chen D, Wang Y, Zhou X, Wang Y, Xu JR.

PLoS One. 2014 Aug 21;9(8):e105811. doi: 10.1371/journal.pone.0105811. eCollection 2014.

2.

The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum.

Hu S, Zhou X, Gu X, Cao S, Wang C, Xu JR.

Mol Plant Microbe Interact. 2014 Jun;27(6):557-66. doi: 10.1094/MPMI-10-13-0306-R.

3.

A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum.

Wang Y, Liu W, Hou Z, Wang C, Zhou X, Jonkers W, Ding S, Kistler HC, Xu JR.

Mol Plant Microbe Interact. 2011 Jan;24(1):118-28. doi: 10.1094/MPMI-06-10-0129.

4.

Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum.

Gu Q, Zhang C, Yu F, Yin Y, Shim WB, Ma Z.

Environ Microbiol. 2015 Aug;17(8):2661-76. doi: 10.1111/1462-2920.12522. Epub 2014 Jun 26.

PMID:
24903410
5.

The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum.

Li Y, Wang C, Liu W, Wang G, Kang Z, Kistler HC, Xu JR.

Mol Plant Microbe Interact. 2011 Apr;24(4):487-96. doi: 10.1094/MPMI-10-10-0233.

6.

Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum.

Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, Zheng D, Wang G, Liu H, Gao X, Ma JW, Kistler HC, Kang Z, Xu JR.

PLoS Pathog. 2011 Dec;7(12):e1002460. doi: 10.1371/journal.ppat.1002460. Epub 2011 Dec 22.

7.

AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum.

Son H, Kim MG, Min K, Seo YS, Lim JY, Choi GJ, Kim JC, Chae SK, Lee YW.

PLoS One. 2013 Sep 10;8(9):e72915. doi: 10.1371/journal.pone.0072915. eCollection 2013.

8.

The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum.

Van Thuat N, Schäfer W, Bormann J.

Mol Plant Microbe Interact. 2012 Sep;25(9):1142-56. doi: 10.1094/MPMI-02-12-0047-R.

9.

FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum.

Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR.

Environ Microbiol. 2015 Apr;17(4):1245-60. doi: 10.1111/1462-2920.12561. Epub 2014 Aug 7.

PMID:
25040476
10.

The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum.

Wang G, Wang C, Hou R, Zhou X, Li G, Zhang S, Xu JR.

PLoS One. 2012;7(5):e38324. doi: 10.1371/journal.pone.0038324. Epub 2012 May 31.

11.

Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum.

Qin J, Wang G, Jiang C, Xu JR, Wang C.

Sci Rep. 2015 Feb 23;5:8504. doi: 10.1038/srep08504.

12.

SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum.

Zhang H, Li B, Fang Q, Li Y, Zheng X, Zhang Z.

Mol Plant Pathol. 2016 Jan;17(1):108-19. doi: 10.1111/mpp.12267. Epub 2015 May 21.

PMID:
25880818
13.

WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus Fusarium graminearum.

Son H, Kim MG, Min K, Lim JY, Choi GJ, Kim JC, Chae SK, Lee YW.

Eukaryot Cell. 2014 Jan;13(1):87-98. doi: 10.1128/EC.00220-13. Epub 2013 Nov 1.

14.

FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum.

Cao S, Zhang S, Hao C, Liu H, Xu JR, Jin Q.

Sci Rep. 2016 Mar 2;6:22333. doi: 10.1038/srep22333.

15.

FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum.

Wu J, Liu Y, Lv W, Yue X, Que Y, Yang N, Zhang Z, Ma Z, Talbot NJ, Wang Z.

Fungal Genet Biol. 2015 Oct;83:92-102. doi: 10.1016/j.fgb.2015.08.012. Epub 2015 Sep 1.

PMID:
26341536
16.

The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum.

Zhou X, Heyer C, Choi YE, Mehrabi R, Xu JR.

Fungal Genet Biol. 2010 Feb;47(2):143-51. doi: 10.1016/j.fgb.2009.11.001. Epub 2009 Nov 10.

PMID:
19909822
17.

MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

Kim Y, Kim H, Son H, Choi GJ, Kim JC, Lee YW.

PLoS One. 2014 Apr 10;9(4):e94359. doi: 10.1371/journal.pone.0094359. eCollection 2014.

18.

FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum.

Li C, Melesse M, Zhang S, Hao C, Wang C, Zhang H, Hall MC, Xu JR.

Mol Microbiol. 2015 Nov;98(4):770-86. doi: 10.1111/mmi.13157. Epub 2015 Sep 10.

19.

The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum.

Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu JR.

PLoS One. 2012;7(11):e49495. doi: 10.1371/journal.pone.0049495. Epub 2012 Nov 14.

20.

RAS2 regulates growth and pathogenesis in Fusarium graminearum.

Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD.

Mol Plant Microbe Interact. 2007 Jun;20(6):627-36.

Supplemental Content

Support Center