Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Pericytes: a double-edged sword in cancer therapy.

Meng MB, Zaorsky NG, Deng L, Wang HH, Chao J, Zhao LJ, Yuan ZY, Ping W.

Future Oncol. 2015;11(1):169-79. doi: 10.2217/fon.14.123. Review.

PMID:
25143028
2.

Rapid vascular regrowth in tumors after reversal of VEGF inhibition.

Mancuso MR, Davis R, Norberg SM, O'Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, Shalinsky DR, Hu-Lowe DD, McDonald DM.

J Clin Invest. 2006 Oct;116(10):2610-21.

3.

Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.

Gacche RN, Meshram RJ.

Prog Biophys Mol Biol. 2013 Nov;113(2):333-54. doi: 10.1016/j.pbiomolbio.2013.10.001. Epub 2013 Oct 15. Review.

PMID:
24139944
4.

Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms.

Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P.

FASEB J. 2004 Feb;18(2):338-40. Epub 2003 Dec 4.

PMID:
14657001
5.

PDGF and vessel maturation.

Hellberg C, Ostman A, Heldin CH.

Recent Results Cancer Res. 2010;180:103-14. doi: 10.1007/978-3-540-78281-0_7. Review.

PMID:
20033380
6.

Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy.

Sato Y.

Cancer Sci. 2011 Jul;102(7):1253-6. doi: 10.1111/j.1349-7006.2011.01929.x. Epub 2011 Apr 14. Review.

7.

Combined anti-angiogenic therapy targeting PDGF and VEGF receptors lowers the interstitial fluid pressure in a murine experimental carcinoma.

Kłosowska-Wardega A, Hasumi Y, Burmakin M, Ahgren A, Stuhr L, Moen I, Reed RK, Rubin K, Hellberg C, Heldin CH.

PLoS One. 2009 Dec 4;4(12):e8149. doi: 10.1371/journal.pone.0008149.

8.

Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors.

Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D.

J Clin Invest. 2003 May;111(9):1287-95.

9.

Vascular endothelial growth factor and vascular endothelial growth factor receptor inhibitors as anti-angiogenic agents in cancer therapy.

Veeravagu A, Hsu AR, Cai W, Hou LC, Tse VC, Chen X.

Recent Pat Anticancer Drug Discov. 2007 Jan;2(1):59-71. Review.

PMID:
18221053
10.

Complementary actions of dopamine D2 receptor agonist and anti-vegf therapy on tumoral vessel normalization in a transgenic mouse model.

Chauvet N, Romanò N, Lafont C, Guillou A, Galibert E, Bonnefont X, Le Tissier P, Fedele M, Fusco A, Mollard P, Coutry N.

Int J Cancer. 2017 May 1;140(9):2150-2161. doi: 10.1002/ijc.30628. Epub 2017 Feb 14.

PMID:
28152577
11.

Pericytes and vessel maturation during tumor angiogenesis and metastasis.

Raza A, Franklin MJ, Dudek AZ.

Am J Hematol. 2010 Aug;85(8):593-8. doi: 10.1002/ajh.21745. Review.

12.

Targeted therapies of cancer: angiogenesis inhibition seems not enough.

Roodink I, Leenders WP.

Cancer Lett. 2010 Dec 18;299(1):1-10. doi: 10.1016/j.canlet.2010.09.004. Review.

PMID:
20889254
13.

Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis.

Guan YY, Luan X, Xu JR, Liu YR, Lu Q, Wang C, Liu HJ, Gao YG, Chen HZ, Fang C.

Biomaterials. 2014 Mar;35(9):3060-70. doi: 10.1016/j.biomaterials.2013.12.027. Epub 2014 Jan 3.

PMID:
24393268
14.

Oncogenes and tumor angiogenesis: the question of vascular "supply" and vascular "demand".

Rak J, Yu JL.

Semin Cancer Biol. 2004 Apr;14(2):93-104. Review.

PMID:
15018893
15.

Blood vessel maturation, vascular phenotype and angiogenic potential in malignant melanoma: one step forward for overcoming anti-angiogenic drug resistance?

Helfrich I, Schadendorf D.

Mol Oncol. 2011 Apr;5(2):137-49. doi: 10.1016/j.molonc.2011.01.003. Epub 2011 Feb 3. Review.

16.

Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy.

Wilkinson-Berka JL, Babic S, De Gooyer T, Stitt AW, Jaworski K, Ong LG, Kelly DJ, Gilbert RE.

Am J Pathol. 2004 Apr;164(4):1263-73.

17.

Targeting pericytes for angiogenic therapies.

Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL.

Microcirculation. 2014 May;21(4):345-57. doi: 10.1111/micc.12107. Review.

18.

Use of a mouse model of pancreatic neuroendocrine tumors to find pericyte biomarkers of resistance to anti-angiogenic therapy.

Franco M, Pàez-Ribes M, Cortez E, Casanovas O, Pietras K.

Horm Metab Res. 2011 Nov;43(12):884-9. doi: 10.1055/s-0031-1284381. Epub 2011 Sep 29.

PMID:
21960459
19.

PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration.

Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O'Reilly T, Persohn E, Rösel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods-Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F.

Cancer Res. 2000 Apr 15;60(8):2178-89.

20.

Selective targeting of interferon γ to stromal fibroblasts and pericytes as a novel therapeutic approach to inhibit angiogenesis and tumor growth.

Bansal R, Tomar T, Ostman A, Poelstra K, Prakash J.

Mol Cancer Ther. 2012 Nov;11(11):2419-28. doi: 10.1158/1535-7163.MCT-11-0758. Epub 2012 Aug 29.

Supplemental Content

Support Center