Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

The toolbox of designing nanoparticles for tumors.

Wang B, Yang Q, Wang Y, Li Z.

Mini Rev Med Chem. 2014;14(9):707-16. Review.

PMID:
25138086
2.

Cancer nanomedicines targeting tumor extracellular pH.

Tian L, Bae YH.

Colloids Surf B Biointerfaces. 2012 Nov 1;99:116-26. doi: 10.1016/j.colsurfb.2011.10.039. Epub 2011 Oct 25. Review.

3.

A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity.

Deng L, Dong H, Dong A, Zhang J.

Eur J Pharm Biopharm. 2015 Nov;97(Pt A):107-17. doi: 10.1016/j.ejpb.2015.10.010. Epub 2015 Oct 26.

PMID:
26515259
4.

Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy.

Du JZ, Mao CQ, Yuan YY, Yang XZ, Wang J.

Biotechnol Adv. 2014 Jul-Aug;32(4):789-803. doi: 10.1016/j.biotechadv.2013.08.002. Epub 2013 Aug 7. Review.

PMID:
23933109
5.

AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy.

Lale SV, R G A, Aravind A, Kumar DS, Koul V.

Biomacromolecules. 2014 May 12;15(5):1737-52. doi: 10.1021/bm5001263. Epub 2014 Apr 15.

PMID:
24689987
6.

Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery.

Chang L, Deng L, Wang W, Lv Z, Hu F, Dong A, Zhang J.

Biomacromolecules. 2012 Oct 8;13(10):3301-10. doi: 10.1021/bm301086c. Epub 2012 Sep 14.

PMID:
22931197
7.

Delivering nanomedicine to solid tumors.

Jain RK, Stylianopoulos T.

Nat Rev Clin Oncol. 2010 Nov;7(11):653-64. doi: 10.1038/nrclinonc.2010.139. Epub 2010 Sep 14. Review.

8.

Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery.

Rejinold NS, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi KP, Nair SV, Tamura H, Jayakumar R.

J Colloid Interface Sci. 2011 Aug 1;360(1):39-51. doi: 10.1016/j.jcis.2011.04.006. Epub 2011 Apr 14.

PMID:
21549390
9.

Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release.

Gui R, Wang Y, Sun J.

Colloids Surf B Biointerfaces. 2014 Apr 1;116:518-25. doi: 10.1016/j.colsurfb.2014.01.044. Epub 2014 Feb 6.

PMID:
24576821
10.

pH-Sensitive Biocompatible Nanoparticles of Paclitaxel-Conjugated Poly(styrene-co-maleic acid) for Anticancer Drug Delivery in Solid Tumors of Syngeneic Mice.

Dalela M, Shrivastav TG, Kharbanda S, Singh H.

ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26530-48. doi: 10.1021/acsami.5b07764. Epub 2015 Nov 23.

PMID:
26528585
11.

Biocompatible amphiphilic pentablock copolymeric nanoparticles for anti-cancer drug delivery.

Byagari K, Shanavas A, Rengan AK, Kundu GC, Srivastava R.

J Biomed Nanotechnol. 2014 Jan;10(1):109-19.

PMID:
24724503
12.

LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors.

Luo G, Yu X, Jin C, Yang F, Fu D, Long J, Xu J, Zhan C, Lu W.

Int J Pharm. 2010 Jan 29;385(1-2):150-6. doi: 10.1016/j.ijpharm.2009.10.014. Epub 2009 Oct 13.

PMID:
19825404
13.

Preparation of pixantrone/poly(γ-glutamic acid) nanoparticles through complex self-assembly for oral chemotherapy.

Meng L, Ji B, Huang W, Wang D, Tong G, Su Y, Zhu X, Yan D.

Macromol Biosci. 2012 Nov;12(11):1524-33. doi: 10.1002/mabi.201200137. Epub 2012 Sep 24.

PMID:
23008063
14.

Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug.

Shen JM, Yin T, Tian XZ, Gao FY, Xu S.

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7014-24. doi: 10.1021/am401277s. Epub 2013 Jul 12.

PMID:
23815399
15.

Stimuli-responsive nanoparticles for targeting the tumor microenvironment.

Du J, Lane LA, Nie S.

J Control Release. 2015 Dec 10;219:205-214. doi: 10.1016/j.jconrel.2015.08.050. Epub 2015 Sep 1. Review.

16.

Fabrication of Curcumin Micellar Nanoparticles with Enhanced Anti-Cancer Activity.

Lee WH, Bebawy M, Loo CY, Luk F, Mason RS, Rohanizadeh R.

J Biomed Nanotechnol. 2015 Jun;11(6):1093-105.

PMID:
26353597
17.

Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity.

Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S, Kim H, Jon S, Chen X, Lee KC.

Int J Pharm. 2011 Jan 17;403(1-2):285-91. doi: 10.1016/j.ijpharm.2010.10.041. Epub 2010 Oct 28.

PMID:
21035530
18.

Transfection system of amino-functionalized calcium phosphate nanoparticles: in vitro efficacy, biodegradability, and immunogenicity study.

Mostaghaci B, Susewind J, Kickelbick G, Lehr CM, Loretz B.

ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5124-33. doi: 10.1021/am507193a. Epub 2015 Mar 2.

PMID:
25692576
19.

Self-assembly nanoparticles for the delivery of bisphosphonates into tumors.

Salzano G, Marra M, Porru M, Zappavigna S, Abbruzzese A, La Rotonda MI, Leonetti C, Caraglia M, De Rosa G.

Int J Pharm. 2011 Jan 17;403(1-2):292-7. doi: 10.1016/j.ijpharm.2010.10.046. Epub 2010 Nov 3.

PMID:
21055454
20.

Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry.

Hama S, Itakura S, Nakai M, Nakayama K, Morimoto S, Suzuki S, Kogure K.

J Control Release. 2015 May 28;206:67-74. doi: 10.1016/j.jconrel.2015.03.011. Epub 2015 Mar 12.

PMID:
25770398

Supplemental Content

Support Center