Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 166


Comparison of primary target volumes delineated on four-dimensional CT and 18 F-FDG PET/CT of non-small-cell lung cancer.

Duan YL, Li JB, Zhang YJ, Wang W, Li FX, Sun XR, Guo YL, Shang DP.

Radiat Oncol. 2014 Aug 15;9:182. doi: 10.1186/1748-717X-9-182.


Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and (18) F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer.

Duan Y, Li J, Zhang Y, Wang W, Sun X, Fan T, Shao Q, Xu M, Guo Y, Shang D.

J Med Imaging Radiat Oncol. 2015 Oct;59(5):623-30. doi: 10.1111/1754-9485.12295. Epub 2015 Mar 5.


[Comparison of three methods to delineate internal gross target volume of the primary hepatocarcinoma based on four-dimensional CT simulation images].

Xing J, Li JB, Zhang YJ, Li FX, Fan TY, Xu M, Shang DP, Han JJ.

Zhonghua Zhong Liu Za Zhi. 2012 Feb;34(2):122-8. doi: 10.3760/cma.j.issn.0253-3766.2012.02.009. Chinese.


A comparative study of target volumes based on 18F-FDG PET-CT and ten phases of 4DCT for primary thoracic squamous esophageal cancer.

Guo Y, Li J, Zhang P, Zhang Y.

Onco Targets Ther. 2017 Jan 6;10:177-184. doi: 10.2147/OTT.S95322. eCollection 2017.


Comparison of patient-specific internal gross tumor volume for radiation treatment of primary esophageal cancer based separately on three-dimensional and four-dimensional computed tomography images.

Wang W, Li J, Zhang Y, Li F, Xu M, Fan T, Shao Q, Shang D.

Dis Esophagus. 2014 May-Jun;27(4):348-54. doi: 10.1111/dote.12089. Epub 2013 Jun 24.


Geometrical differences in gross target volumes between 3DCT and 4DCT imaging in radiotherapy for non-small-cell lung cancer.

Li F, Li J, Zhang Y, Xu M, Shang D, Fan T, Liu T, Shao Q.

J Radiat Res. 2013 Sep;54(5):950-6. doi: 10.1093/jrr/rrt017. Epub 2013 Apr 5.


Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.

Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, Bosch W, Bertrand RJ.

Int J Radiat Oncol Biol Phys. 2004 May 1;59(1):78-86.


Comparison of the planning target volume based on three-dimensional CT and four-dimensional CT images of non-small-cell lung cancer.

Li FX, Li JB, Zhang YJ, Liu TH, Tian SY, Xu M, Shang DP, Ma CS.

Radiother Oncol. 2011 May;99(2):176-80. doi: 10.1016/j.radonc.2011.03.015. Epub 2011 May 4.


Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer.

Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, Kirsch CM.

J Nucl Med. 2005 Aug;46(8):1342-8.


Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning.

Aristophanous M, Berbeco RI, Killoran JH, Yap JT, Sher DJ, Allen AM, Larson E, Chen AB.

Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):e99-105. doi: 10.1016/j.ijrobp.2010.12.060. Epub 2011 Mar 4.


The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.

Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, Abdel-Dayem H, Guirguis A, Ross P, Evola A.

Int J Radiat Oncol Biol Phys. 2005 Nov 15;63(4):1016-23. Epub 2005 Jun 24.


(18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

Hanna GG, McAleese J, Carson KJ, Stewart DP, Cosgrove VP, Eakin RL, Zatari A, Lynch T, Jarritt PH, Young VA, O'Sullivan JM, Hounsell AR.

Int J Radiat Oncol Biol Phys. 2010 May 1;77(1):24-30. doi: 10.1016/j.ijrobp.2009.04.045. Epub 2009 Aug 6.


Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer.

Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL.

Int J Radiat Oncol Biol Phys. 2007 Mar 1;67(3):709-19. Epub 2006 Dec 29. Review.


The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study.

Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, Ehrlich LE, Tirona R.

Int J Radiat Oncol Biol Phys. 2002 Feb 1;52(2):339-50.


Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer.

Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, Grès B, El Balaa H, Keraudy K, Kerrou K, Montravers F, Milleron B, Lebeau B, Talbot JN.

Int J Radiat Oncol Biol Phys. 2005 Dec 1;63(5):1432-41. Epub 2005 Aug 25.


Impact of 18F-FDG PET/CT on target volume delineation in recurrent or residual gynaecologic carcinoma.

Vees H, Casanova N, Zilli T, Imperiano H, Ratib O, Popowski Y, Wang H, Zaidi H, Miralbell R.

Radiat Oncol. 2012 Oct 22;7:176. doi: 10.1186/1748-717X-7-176.


Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer.

Messa C, Ceresoli GL, Rizzo G, Artioli D, Cattaneo M, Castellone P, Gregorc V, Picchio M, Landoni C, Fazio F.

Q J Nucl Med Mol Imaging. 2005 Sep;49(3):259-66.


Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer.

Gondi V, Bradley K, Mehta M, Howard A, Khuntia D, Ritter M, Tomé W.

Int J Radiat Oncol Biol Phys. 2007 Jan 1;67(1):187-95.


Supplemental Content

Support Center