Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina.

Liu LJ, Stockdreher Y, Koch T, Sun ST, Fan Z, Josten M, Sahl HG, Wang Q, Luo YM, Liu SJ, Dahl C, Jiang CY.

J Biol Chem. 2014 Sep 26;289(39):26949-59. doi: 10.1074/jbc.M114.591669. Epub 2014 Aug 13.

2.

Cytoplasmic sulfurtransferases in the purple sulfur bacterium Allochromatium vinosum: evidence for sulfur transfer from DsrEFH to DsrC.

Stockdreher Y, Venceslau SS, Josten M, Sahl HG, Pereira IA, Dahl C.

PLoS One. 2012;7(7):e40785. doi: 10.1371/journal.pone.0040785. Epub 2012 Jul 16.

3.

Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes.

Dahl C.

IUBMB Life. 2015 Apr;67(4):268-74. doi: 10.1002/iub.1371. Epub 2015 Apr 24. Review.

4.

New proteins involved in sulfur trafficking in the cytoplasm of Allochromatium vinosum.

Stockdreher Y, Sturm M, Josten M, Sahl HG, Dobler N, Zigann R, Dahl C.

J Biol Chem. 2014 May 2;289(18):12390-403. doi: 10.1074/jbc.M113.536425. Epub 2014 Mar 19.

5.
6.

Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics.

Jiang CY, Liu LJ, Guo X, You XY, Liu SJ, Poetsch A.

J Proteomics. 2014 Sep 23;109:276-89. doi: 10.1016/j.jprot.2014.07.004. Epub 2014 Jul 14.

PMID:
25034824
7.

Conformational analysis and chemical reactivity of the multidomain sulfurtransferase, Staphylococcus aureus CstA.

Higgins KA, Peng H, Luebke JL, Chang FM, Giedroc DP.

Biochemistry. 2015 Apr 14;54(14):2385-98. doi: 10.1021/acs.biochem.5b00056. Epub 2015 Apr 1.

PMID:
25793461
9.
10.

Physiology and genetics of sulfur-oxidizing bacteria.

Friedrich CG.

Adv Microb Physiol. 1998;39:235-89. Review.

PMID:
9328649
11.

Mechanism of thiosulfate oxidation in the SoxA family of cysteine-ligated cytochromes.

Grabarczyk DB, Chappell PE, Eisel B, Johnson S, Lea SM, Berks BC.

J Biol Chem. 2015 Apr 3;290(14):9209-21. doi: 10.1074/jbc.M114.618025. Epub 2015 Feb 11.

12.

Structural and molecular genetic insight into a widespread sulfur oxidation pathway.

Dahl C, Schulte A, Stockdreher Y, Hong C, Grimm F, Sander J, Kim R, Kim SH, Shin DH.

J Mol Biol. 2008 Dec 31;384(5):1287-300. doi: 10.1016/j.jmb.2008.10.016. Epub 2008 Oct 15.

PMID:
18952098
13.

Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum.

Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC.

J Bacteriol. 2005 Feb;187(4):1392-404.

14.

Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring.

Liu LJ, You XY, Zheng H, Wang S, Jiang CY, Liu SJ.

J Bacteriol. 2011 Jul;193(13):3387-8. doi: 10.1128/JB.05038-11. Epub 2011 May 6.

15.

Allochromatium vinosum DsrC: solution-state NMR structure, redox properties, and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation.

Cort JR, Selan U, Schulte A, Grimm F, Kennedy MA, Dahl C.

J Mol Biol. 2008 Oct 10;382(3):692-707. doi: 10.1016/j.jmb.2008.07.022. Epub 2008 Jul 16.

16.

Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon.

Liu LJ, You XY, Guo X, Liu SJ, Jiang CY.

Int J Syst Evol Microbiol. 2011 Oct;61(Pt 10):2395-400. doi: 10.1099/ijs.0.026591-0. Epub 2010 Nov 5.

PMID:
21057050
17.
18.

The sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis.

Dahl JU, Radon C, Bühning M, Nimtz M, Leichert LI, Denis Y, Jourlin-Castelli C, Iobbi-Nivol C, Méjean V, Leimkühler S.

J Biol Chem. 2013 Feb 22;288(8):5426-42. doi: 10.1074/jbc.M112.431569. Epub 2013 Jan 1.

19.

Terminal oxidase diversity and function in "Metallosphaera yellowstonensis": gene expression and protein modeling suggest mechanisms of Fe(II) oxidation in the sulfolobales.

Kozubal MA, Dlakic M, Macur RE, Inskeep WP.

Appl Environ Microbiol. 2011 Mar;77(5):1844-53. doi: 10.1128/AEM.01646-10. Epub 2011 Jan 14.

20.

TusA (YhhP) and IscS are required for molybdenum cofactor-dependent base-analog detoxification.

Kozmin SG, Stepchenkova EI, Schaaper RM.

Microbiologyopen. 2013 Oct;2(5):743-55. doi: 10.1002/mbo3.108. Epub 2013 Jul 29.

Supplemental Content

Support Center