Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury.

Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, Kim KJ, Crandall ED, Borok Z.

Am J Physiol Lung Cell Mol Physiol. 2014 Oct 1;307(7):L524-36. doi: 10.1152/ajplung.00077.2014.

2.

Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis.

Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, Kim YH, Kim KJ, Laird-Offringa IA, Minoo P, Liebler JM, Zhou B, Crandall ED, Borok Z.

Am J Respir Cell Mol Biol. 2014 Aug;51(2):210-22. doi: 10.1165/rcmb.2013-0353OC.

3.

Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury.

Wray C, Mao Y, Pan J, Chandrasena A, Piasta F, Frank JA.

Am J Physiol Lung Cell Mol Physiol. 2009 Aug;297(2):L219-27. doi: 10.1152/ajplung.00043.2009.

4.

Increased claudin-3, -4 and -18 levels in bronchoalveolar lavage fluid reflect severity of acute lung injury.

Jin W, Rong L, Liu Y, Song Y, Li Y, Pan J.

Respirology. 2013 May;18(4):643-51. doi: 10.1111/resp.12034.

PMID:
23253121
5.

Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression.

Galam L, Rajan A, Failla A, Soundararajan R, Lockey RF, Kolliputi N.

Am J Physiol Lung Cell Mol Physiol. 2016 Mar 15;310(6):L572-81. doi: 10.1152/ajplung.00417.2015.

6.

Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice.

LaFemina MJ, Sutherland KM, Bentley T, Gonzales LW, Allen L, Chapin CJ, Rokkam D, Sweerus KA, Dobbs LG, Ballard PL, Frank JA.

Am J Respir Cell Mol Biol. 2014 Oct;51(4):550-8. doi: 10.1165/rcmb.2013-0456OC.

7.

Chronic alcohol ingestion alters claudin expression in the alveolar epithelium of rats.

Fernandez AL, Koval M, Fan X, Guidot DM.

Alcohol. 2007 Aug;41(5):371-9.

8.

Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs.

Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA.

Am J Pathol. 2011 Sep;179(3):1081-7. doi: 10.1016/j.ajpath.2011.05.017.

9.

Tight junction proteins claudin-3 and claudin-4 control tumor growth and metastases.

Shang X, Lin X, Alvarez E, Manorek G, Howell SB.

Neoplasia. 2012 Oct;14(10):974-85.

10.

Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function.

Mitchell LA, Overgaard CE, Ward C, Margulies SS, Koval M.

Am J Physiol Lung Cell Mol Physiol. 2011 Jul;301(1):L40-9. doi: 10.1152/ajplung.00299.2010.

11.

Roles for claudins in alveolar epithelial barrier function.

Overgaard CE, Mitchell LA, Koval M.

Ann N Y Acad Sci. 2012 Jun;1257:167-74. doi: 10.1111/j.1749-6632.2012.06545.x.

12.

Claudins: Gatekeepers of lung epithelial function.

Schlingmann B, Molina SA, Koval M.

Semin Cell Dev Biol. 2015 Jun;42:47-57. doi: 10.1016/j.semcdb.2015.04.009. Epub 2015 May 4. Review.

13.

Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis.

Ohta H, Chiba S, Ebina M, Furuse M, Nukiwa T.

Am J Physiol Lung Cell Mol Physiol. 2012 Jan 15;302(2):L193-205. doi: 10.1152/ajplung.00349.2010.

14.

Activation of Src-dependent Smad3 signaling mediates the neutrophilic inflammation and oxidative stress in hyperoxia-augmented ventilator-induced lung injury.

Li LF, Lee CS, Liu YY, Chang CH, Lin CW, Chiu LC, Kao KC, Chen NH, Yang CT.

Respir Res. 2015 Sep 16;16:112. doi: 10.1186/s12931-015-0275-6.

15.

Claudin-3 and claudin-4 regulate sensitivity to cisplatin by controlling expression of the copper and cisplatin influx transporter CTR1.

Shang X, Lin X, Manorek G, Howell SB.

Mol Pharmacol. 2013 Jan;83(1):85-94. doi: 10.1124/mol.112.079798.

16.

[Effects of the treatment with different fluids on alveolar epithelium barrier in rats with acute lung injury].

Wei HX, Yang Y, Qiu HB, Guo T, Zhao MM, Chen QH.

Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2009 Jul;21(7):412-5. Chinese.

17.

Non-muscle myosin light chain kinase isoform is a viable molecular target in acute inflammatory lung injury.

Mirzapoiazova T, Moitra J, Moreno-Vinasco L, Sammani S, Turner JR, Chiang ET, Evenoski C, Wang T, Singleton PA, Huang Y, Lussier YA, Watterson DM, Dudek SM, Garcia JG.

Am J Respir Cell Mol Biol. 2011 Jan;44(1):40-52. doi: 10.1165/rcmb.2009-0197OC.

18.

Extracellular matrix influences alveolar epithelial claudin expression and barrier function.

Koval M, Ward C, Findley MK, Roser-Page S, Helms MN, Roman J.

Am J Respir Cell Mol Biol. 2010 Feb;42(2):172-80. doi: 10.1165/rcmb.2008-0270OC.

19.

Heterogeneity of claudin expression by alveolar epithelial cells.

Wang F, Daugherty B, Keise LL, Wei Z, Foley JP, Savani RC, Koval M.

Am J Respir Cell Mol Biol. 2003 Jul;29(1):62-70.

PMID:
12600828
20.

Functions of type II pneumocyte-derived vascular endothelial growth factor in alveolar structure, acute inflammation, and vascular permeability.

Mura M, Binnie M, Han B, Li C, Andrade CF, Shiozaki A, Zhang Y, Ferrara N, Hwang D, Waddell TK, Keshavjee S, Liu M.

Am J Pathol. 2010 Apr;176(4):1725-34. doi: 10.2353/ajpath.2010.090209.

Supplemental Content

Support Center