Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells.

Cho CS, Yoon HJ, Kim JY, Woo HA, Rhee SG.

Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12043-8. doi: 10.1073/pnas.1401100111. Epub 2014 Aug 4.

2.

Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins.

Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG.

J Biol Chem. 2005 Feb 4;280(5):3125-8. Epub 2004 Dec 8.

3.

Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm.

Rhee SG, Kil IS.

Free Radic Biol Med. 2016 Nov;100:73-80. doi: 10.1016/j.freeradbiomed.2016.10.011. Epub 2016 Oct 27. Review.

PMID:
28236420
4.

Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells.

Cho CS, Lee S, Lee GT, Woo HA, Choi EJ, Rhee SG.

Antioxid Redox Signal. 2010 Jun 1;12(11):1235-46. doi: 10.1089/ars.2009.2701.

5.

Peroxiredoxin-2 recycling is inhibited during erythrocyte storage.

Harper VM, Oh JY, Stapley R, Marques MB, Wilson L, Barnes S, Sun CW, Townes T, Patel RP.

Antioxid Redox Signal. 2015 Feb 1;22(4):294-307. doi: 10.1089/ars.2014.5950. Epub 2014 Nov 10.

6.
7.

Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm.

Rhee SG, Kil IS.

Free Radic Biol Med. 2016 Aug 4;99:120-127. doi: 10.1016/j.freeradbiomed.2016.07.029. [Epub ahead of print] Review.

PMID:
27497909
8.

Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver.

Bae SH, Sung SH, Cho EJ, Lee SK, Lee HE, Woo HA, Yu DY, Kil IS, Rhee SG.

Hepatology. 2011 Mar;53(3):945-53. doi: 10.1002/hep.24104. Epub 2011 Feb 11.

PMID:
21319188
9.

Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery.

Phalen TJ, Weirather K, Deming PB, Anathy V, Howe AK, van der Vliet A, Jönsson TJ, Poole LB, Heintz NH.

J Cell Biol. 2006 Dec 4;175(5):779-89.

10.

Mutagenesis and modeling of the peroxiredoxin (Prx) complex with the NMR structure of ATP-bound human sulfiredoxin implicate aspartate 187 of Prx I as the catalytic residue in ATP hydrolysis.

Lee DY, Park SJ, Jeong W, Sung HJ, Oho T, Wu X, Rhee SG, Gruschus JM.

Biochemistry. 2006 Dec 26;45(51):15301-9. Epub 2006 Dec 5.

PMID:
17176052
11.

Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia.

Bae SH, Woo HA, Sung SH, Lee HE, Lee SK, Kil IS, Rhee SG.

Antioxid Redox Signal. 2009 May;11(5):937-48. doi: 10.1089/ARS.2008.2325.

PMID:
19086807
12.

Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III.

Noh YH, Baek JY, Jeong W, Rhee SG, Chang TS.

J Biol Chem. 2009 Mar 27;284(13):8470-7. doi: 10.1074/jbc.M808981200. Epub 2009 Jan 28.

13.

Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II.

Seo JH, Lim JC, Lee DY, Kim KS, Piszczek G, Nam HW, Kim YS, Ahn T, Yun CH, Kim K, Chock PB, Chae HZ.

J Biol Chem. 2009 May 15;284(20):13455-65. doi: 10.1074/jbc.M900641200. Epub 2009 Mar 13.

14.

Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability.

Han YH, Kim SU, Kwon TH, Lee DS, Ha HL, Park DS, Woo EJ, Lee SH, Kim JM, Chae HB, Lee SY, Kim BY, Yoon DY, Rhee SG, Fibach E, Yu DY.

Biochem Biophys Res Commun. 2012 Sep 28;426(3):427-32. doi: 10.1016/j.bbrc.2012.08.113. Epub 2012 Aug 30.

PMID:
22960070
15.

Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?

Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS.

Antioxid Redox Signal. 2018 Mar 1;28(7):574-590. doi: 10.1089/ars.2017.7214. Epub 2017 Sep 8.

PMID:
28762774
16.

Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

Oh JY, Stapley R, Harper V, Marques MB, Patel RP.

Transfusion. 2015 Dec;55(12):2967-78. doi: 10.1111/trf.13248. Epub 2015 Jul 22.

17.

Identification of intact protein thiosulfinate intermediate in the reduction of cysteine sulfinic acid in peroxiredoxin by human sulfiredoxin.

Jönsson TJ, Tsang AW, Lowther WT, Furdui CM.

J Biol Chem. 2008 Aug 22;283(34):22890-4. doi: 10.1074/jbc.C800124200. Epub 2008 Jun 30.

18.

Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin.

Jeong W, Park SJ, Chang TS, Lee DY, Rhee SG.

J Biol Chem. 2006 May 19;281(20):14400-7. Epub 2006 Mar 24.

19.

Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin.

Lowther WT, Haynes AC.

Antioxid Redox Signal. 2011 Jul 1;15(1):99-109. doi: 10.1089/ars.2010.3564. Epub 2010 Dec 17. Review.

20.

Supplemental Content

Support Center